Displaying 1361 – 1380 of 2641

Showing per page

On Functions with the Cauchy Difference Bounded by a Functional

Włodzimierz Fechner (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

K. Baron and Z. Kominek [2] have studied the functional inequality f(x+y) - f(x) - f(y) ≥ ϕ (x,y), x, y ∈ X, under the assumptions that X is a real linear space, ϕ is homogeneous with respect to the second variable and f satisfies certain regularity conditions. In particular, they have shown that ϕ is bilinear and symmetric and f has a representation of the form f(x) = ½ ϕ(x,x) + L(x) for x ∈ X, where L is a linear function. The purpose of the present...

On generalized d'Alembert functional equation.

Mohamed Akkouchi, Allal Bakali, Belaid Bouikhalene, El Houcien El Qorachi (2006)

Extracta Mathematicae

Let G be a locally compact group. Let σ be a continuous involution of G and let μ be a complex bounded measure. In this paper we study the generalized d'Alembert functional equationD(μ)    ∫G f(xty)dμ(t) + ∫G f(xtσ(y))dμ(t) = 2f(x)f(y) x, y ∈ G;where f: G → C to be determined is a measurable and essentially bounded function.

On generalized difference equations

Miroslav Bosák, Jiří Gregor (1987)

Aplikace matematiky

In this paper linear difference equations with several independent variables are considered, whose solutions are functions defined on sets of n -dimensional vectors with integer coordinates. These equations could be called partial difference equations. Existence and uniqueness theorems for these equations are formulated and proved, and interconnections of such results with the theory of linear multidimensional digital systems are investigated. Numerous examples show essential differences of the results...

Currently displaying 1361 – 1380 of 2641