On approximate solutions of a system of functional equations
The (modified) two-parametric Mittag-Leffler function plays an essential role in solving the so-called fractional differential equations. Its asymptotics is known (at least for a subset of its domain and special choices of the parameters). The aim of the paper is to introduce a discrete analogue of this function as a solution of a certain two-term linear fractional difference equation (involving both the Riemann-Liouville as well as the Caputo fractional -difference operators) and describe its...
We establish conditions under which Baire measurable solutions f of defined on a metrizable topological group are continuous at zero.