The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 481 – 500 of 1168

Showing per page

Nearness relations in linear spaces

Martin Kalina (2004)

Kybernetika

In this paper, we consider nearness-based convergence in a linear space, where the coordinatewise given nearness relations are aggregated using weighted pseudo-arithmetic and geometric means and using continuous t-norms.

Necessary and sufficient Tauberian conditions for the logarithmic summability of functions and sequences

Ferenc Móricz (2013)

Studia Mathematica

Let s: [1,∞) → ℂ be a locally Lebesgue integrable function. We say that s is summable (L,1) if there exists some A ∈ ℂ such that l i m t τ ( t ) = A , where τ ( t ) : = 1 / ( l o g t ) 1 t s ( u ) / u d u . (*) It is clear that if the ordinary limit s(t) → A exists, then also τ(t) → A as t → ∞. We present sufficient conditions, which are also necessary, in order that the converse implication hold true. As corollaries, we obtain so-called Tauberian theorems which are analogous to those known in the case of summability (C,1). For example, if the function s is slowly...

Nilakantha's accelerated series for π

David Brink (2015)

Acta Arithmetica

We show how the idea behind a formula for π discovered by the Indian mathematician and astronomer Nilakantha (1445-1545) can be developed into a general series acceleration technique which, when applied to the Gregory-Leibniz series, gives the formula π = n = 0 ( ( 5 n + 3 ) n ! ( 2 n ) ! ) / ( 2 n - 1 ( 3 n + 2 ) ! ) with convergence as 13 . 5 - n , in much the same way as the Euler transformation gives π = n = 0 ( 2 n + 1 n ! n ! ) / ( 2 n + 1 ) ! with convergence as 2 - n . Similar transformations lead to other accelerated series for π, including three “BBP-like” formulas, all of which are collected in the Appendix....

Nonabsolutely convergent series

Dana Fraňková (1991)

Mathematica Bohemica

Assume that for any t from an interval [ a , b ] a real number u ( t ) is given. Summarizing all these numbers u ( t ) is no problem in case of an absolutely convergent series t [ a , b ] u ( t ) . The paper gives a rule how to summarize a series of this type which is not absolutely convergent, using a theory of generalized Perron (or Kurzweil) integral.

Non-embeddability of general unipotent diffeomorphisms up to formal conjugacy

Javier Ribón (2009)

Annales de l’institut Fourier

The formal class of a germ of diffeomorphism ϕ is embeddable in a flow if ϕ is formally conjugated to the exponential of a germ of vector field. We prove that there are complex analytic unipotent germs of diffeomorphisms at n ( n > 1 ) whose formal class is non-embeddable. The examples are inside a family in which the non-embeddability is of geometrical type. The proof relies on the properties of some linear functional operators that we obtain through the study of polynomial families of diffeomorphisms...

Currently displaying 481 – 500 of 1168