Displaying 901 – 920 of 1168

Showing per page

Summability "au plus petit terme"

María-Angeles Zurro (1995)

Studia Mathematica

There is a curious phenomenon in the theory of Gevrey asymptotic expansions. In general the asymptotic formal power series is divergent, but there is some partial sum which approaches the value of the function very well. In this note we prove that there exists a truncation of the series which comes near the function in an exponentially flat way.

Summable families in nuclear groups

Wojciech Banaszczyk (1993)

Studia Mathematica

Nuclear groups form a class of abelian topological groups which contains LCA groups and nuclear locally convex spaces, and is closed with respect to certain natural operations. In nuclear locally convex spaces, weakly summable families are strongly summable, and strongly summable are absolutely summable. It is shown that these theorems can be generalized in a natural way to nuclear groups.

Currently displaying 901 – 920 of 1168