The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 61 –
80 of
128
To each set of knots for i = 0,...,2ν and for i = 2ν + 1,..., n + ν, with 1 ≤ ν ≤ n, there corresponds the space of all piecewise linear and continuous functions on I = [0,1] with knots and the orthogonal projection of L²(I) onto . The main result is
.
This shows that the Lebesgue constant for the Franklin orthogonal system is 2 + (2-√3)².
MSC 2010: 41A10, 41A15, 41A25, 41A36For functions belonging to the classes C2[0; 1] and C3[0; 1], we establish the lower estimate with an explicit constant in approximation by Bernstein polynomials in terms of the second order Ditzian-Totik modulus of smoothness. Several applications to some concrete examples of functions are presented.
The electronic Schrödinger equation describes the motion of N electrons under Coulomb interaction forces in a field of clamped nuclei. The solutions of this equation, the electronic wave functions, depend on 3N variables, three spatial dimensions for each electron. Approximating them is thus inordinately challenging. As is shown in the author's monograph [Yserentant, Lecture Notes in Mathematics 2000, Springer (2010)], the regularity of the solutions, which increases with the number of electrons,...
The electronic Schrödinger equation describes the motion of N
electrons under Coulomb interaction forces in a field of clamped
nuclei. The solutions of this equation, the electronic wave functions,
depend on 3N variables, three spatial dimensions for each electron.
Approximating them is thus inordinately challenging. As is shown in
the author's monograph [Yserentant, Lecture Notes in Mathematics2000,
Springer (2010)], the regularity of the solutions, which
increases with the number of electrons,...
For n ∈ ℕ, L > 0, and p ≥ 1 let be the largest possible value of k for which there is a polynomial P ≠ 0 of the form
, 1/paj ∈ ℂsuch that divides P(x). For n ∈ ℕ and L > 0 let be the largest possible value of k for which there is a polynomial P ≠ 0 of the form
, , ,
such that divides P(x). We prove that there are absolute constants c₁ > 0 and c₂ > 0 such that
for every L ≥ 1. This complements an earlier result of the authors valid for every n ∈ ℕ and L ∈ (0,1]. Essentially...
Let D and ∂D denote the open unit disk and the unit circle of the complex plane, respectively. We denote by ₙ (resp. ) the set of all polynomials of degree at most n with real (resp. complex) coefficients. We define the truncation operators Sₙ for polynomials of the form , , by
,
(here 0/0 is interpreted as 1). We define the norms of the truncation operators by
,
.
Our main theorem establishes the right order of magnitude of the above norms: there is an absolute constant c₁ > 0 such...
We prove some results which give explicit methods for determining an upper bound for the rate of approximation by means of operators preserving a cone. Thenwe obtain some quantitative results on the rate of convergence for some sequences of linear shape-preserving operators.
Currently displaying 61 –
80 of
128