The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 2321 – 2340 of 3651

Showing per page

Problems on averages and lacunary maximal functions

Andreas Seeger, James Wright (2011)

Banach Center Publications

We prove three results concerning convolution operators and lacunary maximal functions associated to dilates of measures. First we obtain an H¹ to L 1 , bound for lacunary maximal operators under a dimensional assumption on the underlying measure and an assumption on an L p regularity bound for some p > 1. Secondly, we obtain a necessary and sufficient condition for L² boundedness of lacunary maximal operator associated to averages over convex curves in the plane. Finally we prove an L p regularity result...

Properties of refinable measures.

Tim N. T. Goodman (2002)

RACSAM

We give some new properties of refinable measures and survey results on their asymptotic normality. We also give a survey on the asymptotically optimal time-frequency localisation of refinable measures and associated wavelets.

Quadrature formulas based on the scaling function

Václav Finěk (2005)

Applications of Mathematics

The scaling function corresponding to the Daubechies wavelet with two vanishing moments is used to derive new quadrature formulas. This scaling function has the smallest support among all orthonormal scaling functions with the properties M 2 = M 1 2 and M 0 = 1 . So, in this sense, its choice is optimal. Numerical examples are given.

Quantized orthonormal systems: A non-commutative Kwapień theorem

J. García-Cuerva, J. Parcet (2003)

Studia Mathematica

The concepts of Riesz type and cotype of a given Banach space are extended to a non-commutative setting. First, the Banach space is replaced by an operator space. The notion of quantized orthonormal system, which plays the role of an orthonormal system in the classical setting, is then defined. The Fourier type and cotype of an operator space with respect to a non-commutative compact group fit in this context. Also, the quantized analogs of Rademacher and Gaussian systems are treated. All this is...

Quasicrystals and almost periodic functions

Mariusz Zając (1999)

Annales Polonici Mathematici

We consider analogies between the "cut-and-project" method of constructing quasicrystals and the theory of almost periodic functions. In particular an analytic method of constructing almost periodic functions by means of convolution is presented. A geometric approach to critical points of such functions is also shown and illustrated with examples.

Currently displaying 2321 – 2340 of 3651