Quadrature formulas based on the scaling function
Applications of Mathematics (2005)
- Volume: 50, Issue: 4, page 387-399
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topFiněk, Václav. "Quadrature formulas based on the scaling function." Applications of Mathematics 50.4 (2005): 387-399. <http://eudml.org/doc/33228>.
@article{Finěk2005,
abstract = {The scaling function corresponding to the Daubechies wavelet with two vanishing moments is used to derive new quadrature formulas. This scaling function has the smallest support among all orthonormal scaling functions with the properties $M_2 = M_1^2$ and $M_0 = 1$. So, in this sense, its choice is optimal. Numerical examples are given.},
author = {Finěk, Václav},
journal = {Applications of Mathematics},
keywords = {Daubechies wavelet; quadrature formula; Daubechies wavelet; quadrature formula},
language = {eng},
number = {4},
pages = {387-399},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Quadrature formulas based on the scaling function},
url = {http://eudml.org/doc/33228},
volume = {50},
year = {2005},
}
TY - JOUR
AU - Finěk, Václav
TI - Quadrature formulas based on the scaling function
JO - Applications of Mathematics
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 4
SP - 387
EP - 399
AB - The scaling function corresponding to the Daubechies wavelet with two vanishing moments is used to derive new quadrature formulas. This scaling function has the smallest support among all orthonormal scaling functions with the properties $M_2 = M_1^2$ and $M_0 = 1$. So, in this sense, its choice is optimal. Numerical examples are given.
LA - eng
KW - Daubechies wavelet; quadrature formula; Daubechies wavelet; quadrature formula
UR - http://eudml.org/doc/33228
ER -
References
top- Wavelets: Mathematics and Applications. Studies in Advanced Mathematics, CRC Press, Boca Raton, 1994. (1994) MR1247511
- Wavelet Methods in Numerical Analysis, Handbook of Numerical Analysis, Vol. VII, P. G. Ciarlet et al. (eds.), North-Holland/Elsevier, Amsterdam, 2000, pp. 417–711. (2000) Zbl0976.65124MR1804747
- 10.1002/cpa.3160410705, Commun. Pure Appl. Math. 41 (1988), 909–996. (1988) Zbl0644.42026MR0951745DOI10.1002/cpa.3160410705
- Ten Lectures on Wavelets, SIAM Publ., Philadelphia, 1992. (1992) Zbl0776.42018MR1162107
- Daubechies wavelets and two-point boundary value problems, Appl. Math. 49 (2004), 465–481. (2004) MR2086089
- 10.1081/NFA-200041709, Numer. Funct. Anal. Optimization 25 (2004), 503–513. (2004) Zbl1069.42022MR2106272DOI10.1081/NFA-200041709
- The Numerical Integral Algorithm Based on Multiresolution Analysis, Preprint (Wavelet Digest), Department of Electronic Technique, NUDT, Changsha, 2001. (2001)
- Wavelets. Theorie und Anwendungen, Teubner, Stuttgart, 1994. (1994) MR1371382
- Ondelettes et Opérateurs I: Ondelettes, Hermann Press, Paris, 1990; English translation: Wavelets and Operators. Cambridge University Press, Cambridge, 1992. (1990; English translation: Wavelets and Operators. Cambridge University Press, Cambridge, 1992) Zbl0694.41037MR1085487
- Quadratures involving polynomials and Daubechies’ wavelets, Preprint, National Central University, Chung-Li, R.O.C., April 1994. (April 1994)
- 10.1137/0731065, SIAM J. Numer. Anal. 31 (1994), 1240–1264. (1994) MR1286226DOI10.1137/0731065
- A Mathematical Introduction to Wavelets, Cambridge University Press, Cambridge, 1997. (1997) Zbl0865.42026MR1436437
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.