Displaying 481 – 500 of 3638

Showing per page

Basic relations valid for the Bernstein spaces B ² σ and their extensions to larger function spaces via a unified distance concept

P. L. Butzer, R. L. Stens, G. Schmeisser (2014)

Banach Center Publications

Some basic theorems and formulae (equations and inequalities) of several areas of mathematics that hold in Bernstein spaces B σ p are no longer valid in larger spaces. However, when a function f is in some sense close to a Bernstein space, then the corresponding relation holds with a remainder or error term. This paper presents a new, unified approach to these errors in terms of the distance of f from B σ p . The difficult situation of derivative-free error estimates is also covered.

Besov spaces on spaces of homogeneous type and fractals

Dachun Yang (2003)

Studia Mathematica

Let Γ be a compact d-set in ℝⁿ with 0 < d ≤ n, which includes various kinds of fractals. The author shows that the Besov spaces B p q s ( Γ ) defined by two different and equivalent methods, namely, via traces and quarkonial decompositions in the sense of Triebel are the same spaces as those obtained by regarding Γ as a space of homogeneous type when 0 < s < 1, 1 < p < ∞ and 1 ≤ q ≤ ∞.

Best constants and asymptotics of Marcinkiewicz-Zygmund inequalities

Andreas Defant, Marius Junge (1997)

Studia Mathematica

We determine the set of all triples 1 ≤ p,q,r ≤ ∞ for which the so-called Marcinkiewicz-Zygmund inequality is satisfied: There exists a constant c≥ 0 such that for each bounded linear operator T : L q ( μ ) L p ( ν ) , each n ∈ ℕ and functions f 1 , . . . , f n L q ( μ ) , ( ʃ ( k = 1 n | T f k | r ) p / r d ν ) 1 / p c T ( ʃ ( k = 1 n | f k | r ) q / r d μ ) 1 / q . This type of inequality includes as special cases well-known inequalities of Paley, Marcinkiewicz, Zygmund, Grothendieck, and Kwapień. If such a Marcinkiewicz-Zygmund inequality holds for a given triple (p,q,r), then we calculate the best constant c ≥ 0 (with the only exception:...

Best constants for some operators associated with the Fourier and Hilbert transforms

B. Hollenbeck, N. J. Kalton, I. E. Verbitsky (2003)

Studia Mathematica

We determine the norm in L p ( ) , 1 < p < ∞, of the operator I - s c , where c and s are respectively the cosine and sine Fourier transforms on the positive real axis, and I is the identity operator. This solves a problem posed in 1984 by M. S. Birman [Bir] which originated in scattering theory for unbounded obstacles in the plane. We also obtain the L p -norms of the operators aI + bH, where H is the Hilbert transform (conjugate function operator) on the circle or real line, for arbitrary real a,b. Best...

Currently displaying 481 – 500 of 3638