top
CONTENTS1. Introduction.......................................................................................................52. Basic definitions, notations and facts................................................................63. Definitions of the Genchev transform................................................................84. Basic properties of the Genchev transform......................................................115. Some properties of the weight ..............................................................166. The Bergman function of a tube domain..........................................................227. The Bergman space on a convex tube.............................................................268. On L²-holomorphic continuation of a function from the Bergman space...........319. L²-angles between multidimensional tubes.......................................................3910. Calculations of some L²-angles between tube domains..................................58References...........................................................................................................631991 Mathematics Subject Classification: 32H10, 42B10, 32A07, 46E22.
Hyb Wojciech. Bergman function, Genchev transform and L²-angles, for multidimensional tubes. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1996. <http://eudml.org/doc/270070>.
@book{HybWojciech1996, author = {Hyb Wojciech}, keywords = {Hilbert space of square integrable holomorphic functions; Fourier transform; Genchev transform; integral formula for the Bergman kernel; Bergman space; convex domain; Hardy space; holomorphic continuation; existence of -holomorphic continuation; -angles between tube domains}, language = {eng}, location = {Warszawa}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, title = {Bergman function, Genchev transform and L²-angles, for multidimensional tubes}, url = {http://eudml.org/doc/270070}, year = {1996}, }
TY - BOOK AU - Hyb Wojciech TI - Bergman function, Genchev transform and L²-angles, for multidimensional tubes PY - 1996 CY - Warszawa PB - Instytut Matematyczny Polskiej Akademi Nauk LA - eng KW - Hilbert space of square integrable holomorphic functions; Fourier transform; Genchev transform; integral formula for the Bergman kernel; Bergman space; convex domain; Hardy space; holomorphic continuation; existence of -holomorphic continuation; -angles between tube domains UR - http://eudml.org/doc/270070 ER -