The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 781 – 800 of 3651

Showing per page

Convolution operators with anisotropically homogeneous measures on 2 n with n-dimensional support

E. Ferreyra, T. Godoy, M. Urciuolo (2002)

Colloquium Mathematicae

Let α i , β i > 0 , 1 ≤ i ≤ n, and for t > 0 and x = (x₁,...,xₙ) ∈ ℝⁿ, let t x = ( t α x , . . . , t α x ) , t x = ( t β x , . . . , t β x ) and | | x | | = i = 1 n | x i | 1 / α i . Let φ₁,...,φₙ be real functions in C ( - 0 ) such that φ = (φ₁,..., φₙ) satisfies φ(t • x) = t ∘ φ(x). Let γ > 0 and let μ be the Borel measure on 2 n given by μ ( E ) = χ E ( x , φ ( x ) ) | | x | | γ - α d x , where α = i = 1 n α i and dx denotes the Lebesgue measure on ℝⁿ. Let T μ f = μ f and let | | T μ | | p , q be the operator norm of T μ from L p ( 2 n ) into L q ( 2 n ) , where the L p spaces are taken with respect to the Lebesgue measure. The type set E μ is defined by E μ = ( 1 / p , 1 / q ) : | | T μ | | p , q < , 1 p , q . In the case α i β k for 1 ≤ i,k ≤ n we characterize the type set under...

Convolutions related to q-deformed commutativity

Anna Kula (2010)

Banach Center Publications

Two important examples of q-deformed commutativity relations are: aa* - qa*a = 1, studied in particular by M. Bożejko and R. Speicher, and ab = qba, studied by T. H. Koornwinder and S. Majid. The second case includes the q-normality of operators, defined by S. Ôta (aa* = qa*a). These two frameworks give rise to different convolutions. In particular, in the second scheme, G. Carnovale and T. H. Koornwinder studied their q-convolution. In the present paper we consider another convolution of measures...

Coorbit space theory for quasi-Banach spaces

Holger Rauhut (2007)

Studia Mathematica

We generalize the classical coorbit space theory developed by Feichtinger and Gröchenig to quasi-Banach spaces. As a main result we provide atomic decompositions for coorbit spaces defined with respect to quasi-Banach spaces. These atomic decompositions are used to prove fast convergence rates of best n-term approximation schemes. We apply the abstract theory to time-frequency analysis of modulation spaces M m p , q , 0 < p,q ≤ ∞.

Corrigenda: On the product theory of singular integrals.

Alexander Nagel, Elias M. Stein (2005)

Revista Matemática Iberoamericana

We wish to acknowledge and correct an error in a proof in our paper On the product theory of singular integrals, which appeared in Revista Matemática Iberoamericana, volume 20, number 2, 2004, pages 531-561.

Corrigenda to: "Generalizations of theorems of Fejér and Zygmund on convergence and boundedness of conjugate series" (Studia Math. 57 (1976), 241-249)

G. Goes (1998)

Studia Mathematica

Proposition 4.1(i) of [1] is incorrect, i.e. the sequence of Cesàro-sections σ n x of a sequence x in a translation invariant BK-space is not necessarily bounded. Theorem 4.2(ii) of [1] and the proof of Proposition 4.3 of [1] are corrected. All other statements of [1], including Proposition 4.3 itself, are correct.

Costruzione di un sistema di polinomi ortonormali a partire da due suoi polinomi consecutivi

Aldo Ghizzetti (1984)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The following result is proved: to give two consecutive polynomials P n ( x ) , P n + 1 ( x ) of an orthonormal system is equivalent to assign the first 2 n + 3 moments of the Lebesgue-Stieltjes measure associated with the system.

Currently displaying 781 – 800 of 3651