Développement en séries trigonométriques des polynômes de M. Léauté
Given a finite set X⊆ ℝ we characterize the diagonals of self-adjoint operators with spectrum X. Our result extends the Schur-Horn theorem from a finite-dimensional setting to an infinite-dimensional Hilbert space analogous to Kadison's theorem for orthogonal projections (2002) and the second author's result for operators with three-point spectrum (2013).
We investigate some problems of the following type: For which sets H is it true that if f is in a given class ℱ of periodic functions and the difference functions are in a given smaller class G for every h ∈ H then f itself must be in G? Denoting the class of counter-example sets by ℌ(ℱ,G), that is, , we try to characterize ℌ(ℱ,G) for some interesting classes of functions ℱ ⊃ G. We study classes of measurable functions on the circle group that are invariant for changes on null-sets (e.g. measurable...
We show that the maximal operator associated to the family of rectangles in one of whose sides is parallel to for some j,k is bounded on , . We give an application of this theorem to obtain an extension of the Marcinkiewicz multiplier theorem.
The Fourier transform of a weighted Dirac comb of beta-integers is characterized within the framework of the theory of Distributions, in particular its pure point part which corresponds to the Bragg part of the diffraction spectrum. The corresponding intensity function on this Bragg part is computed. We deduce the diffraction spectrum of weighted Delone sets on beta-lattices in the split case for the weight, when beta is the golden mean.
The paper is a continuation of our study of dimension functions of orthonormal wavelets on the real line with dyadic dilations. The main result of Section 2 is Theorem 2.8 which provides an explicit reconstruction of the underlying generalized multiresolution analysis for any MSF wavelet. In Section 3 we reobtain a result of Bownik, Rzeszotnik and Speegle which states that for each dimension function D there exists an MSF wavelet whose dimension function coincides with D. Our method provides a completely...
We present a survey of mixed norm inequalities for several directional operators, namely, directional Hardy-Littlewood maximal functions and Hilbert transforms (both appearing in the method of rotations of Calderón and Zygmund), X-ray transforms, and directional fractional operators related to Riesz type potentials with variable kernel. In dimensions higher than two several interesting questions remain unanswered.[Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential...