Diffraction spectra of weighted Delone sets on beta-lattices with beta a quadratic unitary Pisot number
Jean-Pierre Gazeau[1]; Jean-Louis Verger-Gaugry[2]
- [1] Université Paris 7-Denis Diderot APC - UMR CNRS 7164 Boite 7020 75251 Paris cedex 05 (France)
- [2] Université Grenoble I Institut Fourier - UMR CNRS 5582 BP 74 38402 Saint-Martin d’Hères (France)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 7, page 2437-2461
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGazeau, Jean-Pierre, and Verger-Gaugry, Jean-Louis. "Diffraction spectra of weighted Delone sets on beta-lattices with beta a quadratic unitary Pisot number." Annales de l’institut Fourier 56.7 (2006): 2437-2461. <http://eudml.org/doc/10209>.
@article{Gazeau2006,
abstract = {The Fourier transform of a weighted Dirac comb of beta-integers is characterized within the framework of the theory of Distributions, in particular its pure point part which corresponds to the Bragg part of the diffraction spectrum. The corresponding intensity function on this Bragg part is computed. We deduce the diffraction spectrum of weighted Delone sets on beta-lattices in the split case for the weight, when beta is the golden mean.},
affiliation = {Université Paris 7-Denis Diderot APC - UMR CNRS 7164 Boite 7020 75251 Paris cedex 05 (France); Université Grenoble I Institut Fourier - UMR CNRS 5582 BP 74 38402 Saint-Martin d’Hères (France)},
author = {Gazeau, Jean-Pierre, Verger-Gaugry, Jean-Louis},
journal = {Annales de l’institut Fourier},
keywords = {Delone set; Meyer set; beta-integer; beta-lattice; PV number; mathematical diffraction},
language = {eng},
number = {7},
pages = {2437-2461},
publisher = {Association des Annales de l’institut Fourier},
title = {Diffraction spectra of weighted Delone sets on beta-lattices with beta a quadratic unitary Pisot number},
url = {http://eudml.org/doc/10209},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Gazeau, Jean-Pierre
AU - Verger-Gaugry, Jean-Louis
TI - Diffraction spectra of weighted Delone sets on beta-lattices with beta a quadratic unitary Pisot number
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 7
SP - 2437
EP - 2461
AB - The Fourier transform of a weighted Dirac comb of beta-integers is characterized within the framework of the theory of Distributions, in particular its pure point part which corresponds to the Bragg part of the diffraction spectrum. The corresponding intensity function on this Bragg part is computed. We deduce the diffraction spectrum of weighted Delone sets on beta-lattices in the split case for the weight, when beta is the golden mean.
LA - eng
KW - Delone set; Meyer set; beta-integer; beta-lattice; PV number; mathematical diffraction
UR - http://eudml.org/doc/10209
ER -
References
top- L. Argabright, J. Gil de Lamadrid, Fourier Analysis of Unbounded Measures on Locally Compact Abelian Groups, 145 (1974), American Mathematical Society, Providence, RI Zbl0294.43002MR621876
- M. Baake, R. V. Moody, Weighted Dirac combs with pure point diffraction, J. Reine Angew. Math. 573 (2004), 61-94 Zbl1188.43008MR2084582
- J. P. Bell, K. G. Hare, A Classification of (some) Pisot-Cyclotomic Numbers, J. Number Theory 115 (2005), 215-229 Zbl1084.11058MR2180499
- J.-P. Bertrandias, Espaces de fonctions continues et bornées en moyenne asymptotique d’ordre , Mémoire Soc. Math. France (1966), 3-106 Zbl0148.11701MR196411
- J.-P. Bertrandias, J. Couot, J. Dhombres, M. Mendès-France, P. Phu Hien, Kh. Vo Khac, Espaces de Marcinkiewicz, corrélations, mesures, systèmes dynamiques, (1987), Masson, Paris Zbl0617.46034MR878355
- E. Bombieri, J. E. Taylor, Which distributions diffract? An initial investigation, J. Phys. Colloque 47 (1986), 19-28 Zbl0693.52002
- E. Bombieri, J. E. Taylor, Quasicrystal, tilings, and algebraic number theory: Some preliminary connections, The legacy of S. Kovalevskaya 64 (1987), 241-264, American Mathematical Society, Providence, RI Zbl0617.43002MR881466
- Č. Burdík, C. Frougny, J.-P. Gazeau, R. Krejčar, Beta-integers as natural counting systems for quasicrystals, J. of Physics A: Math. Gen. 31 (1998), 6449-6472 Zbl0941.52019MR1644115
- A. Cordoba, Dirac combs, Lett. Math. Phys. 17 (1989), 191-196 Zbl0681.42013MR995797
- J.-M. Cowley, Diffraction Physics, (1986), North-Holland, Amsterdam
- F. Denoyer, A. Elkharrat, J.-P. Gazeau, Beta-lattice multiresolution of quasicrystalline Bragg peaks, (2006)
- A. Elkharrat, Scale dependent partitioning of one-dimensional aperiodic set diffraction, Europ. Phys. J. B39 (2004), 287-294
- A. Elkharrat, Ch. Frougny, J.-P. Gazeau, J.-L. Verger-Gaugry, Symmetry groups for beta-lattices, Theor. Comp. Sci. 319 (2004), 281-305 Zbl1068.52028MR2074957
- S. Fabre, Substitutions et -systèmes de numération, Theor. Comp. Sci. 137 (1995), 219-236 Zbl0872.11017MR1311222
- A. S. Fraenkel, Systems of numeration, Amer. Math. Monthly 92 (1985), 105-114 Zbl0568.10005MR777556
- C. Frougny, Number Representation and Finite Automata, London Math. Soc. Lecture Note Ser.; 279 (2000), 207-228 Zbl0976.11003MR1776760
- C. Frougny, J.-P. Gazeau, R. Krejčar, Additive and multiplicative properties of point-sets based on beta-integers, Theor. Comp. Sci. 303 (2003), 491-516 Zbl1036.11034MR1990778
- C. Frougny, B. Solomyak, Finite beta-expansions, Ergod. Theor. Dynam. Syst. 12 (1992), 713-723 Zbl0814.68065MR1200339
- J.-P. Gazeau, Pisot-cyclotomic integers for quasilattices, The Mathematics of Long-Range Aperiodic Order (1997), 175-198, MoodyR.V.R., Dordrecht Zbl0887.11043MR1460024
- J.-P. Gazeau, J.-L. Verger-Gaugry, Geometric study of the beta-integers for a Perron number and mathematical quasicrystals, J. Théorie Nombres Bordeaux 16 (2004), 125-149 Zbl1075.11007MR2145576
- J. Gil de Lamadrid, L. Argabright, Almost Periodic Measures, Memoirs of the American Mathematical Society, American Mathematical Society, Providence, RI 85 (1990) Zbl0719.43006MR979431
- A. Guinier, Theory and Techniques for X-Ray Crystallography, (1964), Dunod, Paris
- A. Hof, On diffraction by aperiodic structures, Commun. Math. Phys. 169 (1995), 25-43 Zbl0821.60099MR1328260
- J. C. Lagarias, Geometric Models for Quasicrystals I. Delone Sets of Finite Type, Discr. Comput. Geom. 21 (1999), 161-191 Zbl0924.68190MR1668082
- J. C. Lagarias, Mathematical Quasicrystals and the problem of diffraction, Directions in Mathematical Quasicrystals (2000), 61-93, BaakeM.M., Providence, RI Zbl1161.52312MR1798989
- M. Lothaire, Algebraic Combinatorics on Words, (2002), Cambridge University Press Zbl1001.68093MR1905123
- Y. Meyer, Nombres de Pisot, Nombres de Salem et Analyse Harmonique, Lect. Notes Math. 117 (1969), Springer Zbl0189.14301MR568288
- Y. Meyer, Algebraic Numbers and Harmonic Analysis, (1972), North-Holland Zbl0267.43001MR485769
- Y. Meyer, Quasicrystals, Diophantine approximation and algebraic numbers, Beyond Quasicrystals (1995), 3-16, AxelF.F. Zbl0881.11059MR1420415
- R. V. Moody, Meyer sets and their duals, The Mathematics of Long-Range Aperiodic Order (1997), 403-442, MoodyR. V.R. V. Zbl0880.43008MR1460032
- R. V. Moody, From quasicrystals to more complex systems, Model Sets: A Survey (2000), 145-166, AxelF.F.
- G. Muraz, J.-L. Verger-Gaugry, On lower bounds of the density of Delone sets and holes in sequences of sphere packings, Exp. Math. 14 (2005), 47-57 Zbl1108.52021MR2146518
- W. Parry, On the -expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960), 401-416 Zbl0099.28103MR142719
- N. Pythéas Fogg, Substitutions in dynamics, arithmetics and combinatorics, Lecture Notes in Math. 1794 (2003), Springer Zbl1014.11015MR1970385
- A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hung. 8 (1957), 477-493 Zbl0079.08901MR97374
- M. Schlottmann, Cut-and-Project sets in locally compact Abelian groups, Quasicrystals and Discrete Geometry 10 (1998), 247-264, PateraJ.J., Providence, RI Zbl0912.22002MR1636782
- L. Schwartz, Théorie des distributions, (1973), Hermann, Paris Zbl0962.46025MR209834
- D. Shechtman, I. Blech, D. Gratias, J. Cahn, Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett. 53 (1984), 1951-1953
- N. Strungaru, Almost Periodic Measures and Long-Range Order in Meyer Sets, Discr. Comput. Geom. 33 (2005), 483-505 Zbl1062.43008MR2121992
- W. P. Thurston, Groups, tilings, and finite state automata, (Summer 1989)
- J.-L. Verger-Gaugry, On gaps in Rényi -expansions of unity for an algebraic number, (2006) Zbl1177.11013
- J.-L. Verger-Gaugry, On self-similar finitely generated uniformly discrete (SFU-) sets and sphere packings, Number Theory and Physics (2006), NyssenL.L. Zbl1170.52303
- K. Vo Khac, Fonctions et distributions stationnaires. Application à l’étude des solutions stationnaires d’équations aux dérivées partielles, Espaces de Marcinkiewicz, corrélations, mesures, systèmes dynamiques (1987), 11-57, Masson, Paris
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.