The search session has expired. Please query the service again.
We prove that if as max(|j|,|k|) → ∞, and , then f(x,y)ϕ(x)ψ(y) ∈ L¹(T²) and as min(m,n) → ∞, where f(x,y) is the limiting function of the rectangular partial sums , (ϕ,θ) and (ψ,ϑ) are pairs of type I. A generalization of this result concerning L¹-convergence is also established. Extensions of these results to double series of orthogonal functions are also considered. These results can be extended to n-dimensional case. The aforementioned results generalize work of Balashov [1], Boas [2],...
Let with for all j,k ≥ 1. We estimate the integral in terms of the coefficients , where α, β ∈ ℝ and ϕ: [0,∞] → [0,∞]. Our results can be regarded as the trigonometric analogues of those of Mazhar and Móricz [MM]. They generalize and extend Boas [B, Theorem 6.7].
Currently displaying 1 –
2 of
2