A gradient-projective basis of compactly supported wavelets in dimension n > 1
A given set W = W X of n-variable class C 1 functions is a gradient-projective basis if for every tempered distribution f whose gradient is square-integrable, the sum converges to f with respect to the norm . The set is not necessarily an orthonormal set; the orthonormal expansion formula is just an element of the convex set of valid expansions of the given function f over W. We construct a gradient-projective basis W = W x of compactly supported class C 2−ɛ functions on ℝn such that [...]...