Über Integralzerlegungen von Darstellungen nilpotenter Liegruppen.
We study unbounded harmonic functions for a second order differential operator on a homogeneous manifold of negative curvature which is a semidirect product of a nilpotent Lie group N and A = ℝ⁺. We prove that if F is harmonic and satisfies some growth condition then F has an asymptotic expansion as a → 0 with coefficients from 𝓓'(N). Then we single out a set of at most two of these coefficients which determine F. Then using asymptotic expansions we are able to prove some theorems...
Let be a Riemannian symmetric space of the noncompact type. We prove that the solution of the time-dependent Schrödinger equation on with square integrable initial condition is identically zero at all times whenever and the solution at a time are simultaneously very rapidly decreasing. The stated condition of rapid decrease is of Beurling type. Conditions respectively of Gelfand-Shilov, Cowling-Price and Hardy type are deduced.
The Weinstein transform satisfies some uncertainty principles similar to the Euclidean Fourier transform. A generalization and a variant of Cowling-Price theorem, Miyachi's theorem, Beurling's theorem, and Donoho-Stark's uncertainty principle are obtained for the Weinstein transform.
Let G be an infinite locally compact abelian group and X be a Banach space. We show that if every bounded Fourier multiplier T on L²(G) has the property that is bounded on L²(G,X) then X is isomorphic to a Hilbert space. Moreover, we prove that if 1 < p < ∞, p ≠ 2, then there exists a bounded Fourier multiplier on which is not completely bounded. Finally, we examine unconditionality from the point of view of Schur multipliers. More precisely, we give several necessary and sufficient conditions...
L’espace des -pseudofonctions sur un groupe localement compact est le complété de pour la norme de convoluteur de . Dans le cas où le groupe est moyennable alors le banach dual à s’identifie avec une certaine algèbre de fonctions continues sur . L’algèbre est déjà connue mais ici on montre que est un foncteur de groupes localement compacts. Pour alors est l’algèbre de dont le dual est , l’algèbre de transformées de Fourier-Stieltjes. Donc, pour un groupe moyennable, élément...