Weighted norm inequality for the Poisson integral on the sphere.
We propose a concept of weighted pseudo almost automorphic functions on almost periodic time scales and study some important properties of weighted pseudo almost automorphic functions on almost periodic time scales. As applications, we obtain the conditions for the existence of weighted pseudo almost automorphic mild solutions to a class of semilinear dynamic equations on almost periodic time scales.
Using known results on operator-valued Fourier multipliers on vector-valued function spaces, we give necessary or sufficient conditions for the well-posedness of the second order degenerate equations (P₂): d/dt (Mu’)(t) = Au(t) + f(t) (0 ≤ t ≤ 2π) with periodic boundary conditions u(0) = u(2π), (Mu’)(0) = (Mu’)(2π), in Lebesgue-Bochner spaces , periodic Besov spaces and periodic Triebel-Lizorkin spaces , where A and M are closed operators in a Banach space X satisfying D(A) ⊂ D(M). Our results...
We define the Weyl functional calculus for real and complex symmetric domains, and compute the associated Weyl transform in the rank 1 case.
Let be the Riesz distribution on a simple Euclidean Jordan algebra, parametrized by . I give an elementary proof of the necessary and sufficient condition for to be a locally finite complex measure (= complex Radon measure).
Let A be an A*-algebra with enveloping C*-algebra C*(A). We show that, under certain conditions, a homomorphism from C*(A) into a Banach algebra is continuous if and only if its restriction to A is continuous. We apply this result to the question in the title.
We generalize Wiener's inversion theorem for Fourier transforms on closed subsets of the dual group of a locally compact abelian group to cosets of ideals in a class of non-commutative *-algebras having specified properties, which are all fulfilled in the case of the group algebra of any locally compact abelian group.