The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 121 – 140 of 2300

Showing per page

A spectral gap property for subgroups of finite covolume in Lie groups

Bachir Bekka, Yves Cornulier (2010)

Colloquium Mathematicae

Let G be a real Lie group and H a lattice or, more generally, a closed subgroup of finite covolume in G. We show that the unitary representation λ G / H of G on L²(G/H) has a spectral gap, that is, the restriction of λ G / H to the orthogonal complement of the constants in L²(G/H) does not have almost invariant vectors. This answers a question of G. Margulis. We give an application to the spectral geometry of locally symmetric Riemannian spaces of infinite volume.

A spectral gap theorem in SU ( d )

Jean Bourgain, Alex Gamburd (2012)

Journal of the European Mathematical Society

We establish the spectral gap property for dense subgroups of SU ( d ) ( d 2 ) , generated by finitely many elements with algebraic entries; this result was announced...

A spectral Paley-Wiener theorem for the Heisenberg group and a support theorem for the twisted spherical means on n

E. K. Narayanan, S. Thangavelu (2006)

Annales de l’institut Fourier

We prove a spectral Paley-Wiener theorem for the Heisenberg group by means of a support theorem for the twisted spherical means on n . If f ( z ) e 1 4 | z | 2 is a Schwartz class function we show that f is supported in a ball of radius B in n if and only if f × μ r ( z ) = 0 for r > B + | z | for all z n . This is an analogue of Helgason’s support theorem on Euclidean and hyperbolic spaces. When n = 1 we show that the two conditions f × μ r ( z ) = μ r × f ( z ) = 0 for r > B + | z | imply a support theorem for a large class of functions with exponential growth. Surprisingly enough,this latter...

A spectral theory for locally compact abelian groups of automorphisms of commutative Banach algebras

Sen Huang (1999)

Studia Mathematica

Let A be a commutative Banach algebra with Gelfand space ∆ (A). Denote by Aut (A) the group of all continuous automorphisms of A. Consider a σ(A,∆(A))-continuous group representation α:G → Aut(A) of a locally compact abelian group G by automorphisms of A. For each a ∈ A and φ ∈ ∆(A), the function φ a ( t ) : = φ ( α t a ) t ∈ G is in the space C(G) of all continuous and bounded functions on G. The weak-star spectrum σ w * ( φ a ) is defined as a closed subset of the dual group Ĝ of G. For φ ∈ ∆(A) we define Ʌ φ a to be the union of all...

A subelliptic Bourgain–Brezis inequality

Yi Wang, Po-Lam Yung (2014)

Journal of the European Mathematical Society

We prove an approximation lemma on (stratified) homogeneous groups that allows one to approximate a function in the non-isotropic Sobolev space N L ˙ 1 , Q by L functions, generalizing a result of Bourgain–Brezis. We then use this to obtain a Gagliardo–Nirenberg inequality for on the Heisenberg group n .

A triple ratio on the Silov boundary of a bounded symmetric domain

Jean-Louis Clerc (2002)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let D be a Hermitian symmetric space of tube type, S its Silov boundary and G the neutral component of the group of bi-holomorphic diffeomorphisms of D . Our main interest is in studying the action of G on S 3 = S × S × S . Sections 1 and 2 are part of a joint work with B. Ørsted (see [4]). In Section 1, as a pedagogical introduction, we study the case where D is the unit disc and S is the circle. This is a fairly elementary and explicit case, where one can easily get a flavour of the more general results. In Section...

A weak type (1,1) estimate for a maximal operator on a group of isometries of a homogeneous tree

Michael G. Cowling, Stefano Meda, Alberto G. Setti (2010)

Colloquium Mathematicae

We give a simple proof of a result of R. Rochberg and M. H. Taibleson that various maximal operators on a homogeneous tree, including the Hardy-Littlewood and spherical maximal operators, are of weak type (1,1). This result extends to corresponding maximal operators on a transitive group of isometries of the tree, and in particular for (nonabelian finitely generated) free groups.

Currently displaying 121 – 140 of 2300