The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 57

Showing per page

Caputo-Type Modification of the Erdélyi-Kober Fractional Derivative

Luchko, Yury, Trujillo, Juan (2007)

Fractional Calculus and Applied Analysis

2000 Math. Subject Classification: 26A33; 33E12, 33E30, 44A15, 45J05The Caputo fractional derivative is one of the most used definitions of a fractional derivative along with the Riemann-Liouville and the Grünwald- Letnikov ones. Whereas the Riemann-Liouville definition of a fractional derivative is usually employed in mathematical texts and not so frequently in applications, and the Grünwald-Letnikov definition – for numerical approximation of both Caputo and Riemann-Liouville fractional derivatives,...

Characterization of surjective convolution operators on Sato's hyperfunctions

Michael Langenbruch (2010)

Banach Center Publications

Let μ ( d ) ' be an analytic functional and let T μ be the corresponding convolution operator on Sato’s space ( d ) of hyperfunctions. We show that T μ is surjective iff T μ admits an elementary solution in ( d ) iff the Fourier transform μ̂ satisfies Kawai’s slowly decreasing condition (S). We also show that there are 0 μ ( d ) ' such that T μ is not surjective on ( d ) .

Commutants of the Dunkl Operators in C(R)

Dimovski, Ivan, Hristov, Valentin, Sifi, Mohamed (2006)

Fractional Calculus and Applied Analysis

2000 Mathematics Subject Classification: 44A35; 42A75; 47A16, 47L10, 47L80The Dunkl operators.* Supported by the Tunisian Research Foundation under 04/UR/15-02.

Commutative neutrix convolution products of functions

Brian Fisher, Adem Kiliçman (1994)

Commentationes Mathematicae Universitatis Carolinae

The commutative neutrix convolution product of the functions x r e - λ x and x s e + μ x is evaluated for r , s = 0 , 1 , 2 , ... and all λ , μ . Further commutative neutrix convolution products are then deduced.

Currently displaying 1 – 20 of 57

Page 1 Next