(,) mapping properties of convolution transforms
Laplace transform and some of the author’s previous results about first order differential-recurrence equations with discrete auto-convolution are used to solve a new type of non-linear quadratic integral equation. This paper continues the author’s work from other articles in which are considered and solved new types of algebraic-differential or integral equations.
Given a real-valued continuous function ƒ on the half-line [0,∞) we denote by P*(ƒ) the set of all probability measures μ on [0,∞) with finite ƒ-moments (n = 1,2...). A function ƒ is said to have the identification propertyif probability measures from P*(ƒ) are uniquely determined by their ƒ-moments. A function ƒ is said to be a Bernstein function if it is infinitely differentiable on the open half-line (0,∞) and is completely monotone for some nonnegative integer n. The purpose of this paper...
Mathematics Subject Classification: 26A33, 30B10, 33B15, 44A10, 47N70, 94C05We suggest a fractional differential equation that combines the simple harmonic oscillations of an LC circuit with the discharging of an RC circuit. A series solution is obtained for the suggested fractional differential equation. When the fractional order α = 0, we get the solution for the RC circuit, and when α = 1, we get the solution for the LC circuit. For arbitrary α we get a general solution which shows how the...
An infinite series which arises in certain applications of the Lagrange-Bürmann formula to exponential functions is investigated. Several very exact estimates for the Laplace transform and higher moments of this function are developed.