The search session has expired. Please query the service again.
This paper is concerned with asymptotic analysis of strongly decaying solutions of the third-order singular differential equation , by means of regularly varying functions, where is a positive constant and is a positive continuous function on . It is shown that if is a regularly varying function, then it is possible to establish necessary and sufficient conditions for the existence of slowly varying solutions and regularly varying solutions of (A) which decrease to as and to acquire...
In this paper the notion of the derivative of the norm of a linear mapping in a normed vector space is introduced. The fundamental properties of the derivative of the norm are established. Using these properties, linear differential equations in a Banach space are studied and lower and upper estimates of the norms of their solutions are derived.
In this paper we consider the nonlocal (nonstandard) Cauchy problem for differential inclusions in Banach spaces
x'(t) ∈ F(t,x(t)), x(0)=g(x), t ∈ [0,T] = I.
Investigation over some multivalued integrals allow us to prove the existence of solutions for considered problem. We concentrate on the problems for which the assumptions are expressed in terms of the weak topology in a Banach space. We recall and improve earlier papers of this type. The paper is complemented...
The Leray-Schauder degree is extended to certain multi-valued mappings on separable Hilbert spaces with applications to the existence of weak periodic solutions of discontinuous semilinear wave equations with fixed ends.
An impulsive differential equation with time varying delay is proposed in this paper. By using some analysis techniques with combination of coincidence degree theory, sufficient conditions for the permanence, the existence and global attractivity of positive periodic solution are established. The results of this paper improve and generalize some previously known results.
Currently displaying 1 –
6 of
6