The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 1 of 1

Showing per page

Balancing vectors and convex bodies

Wojciech Banaszczyk (1993)

Studia Mathematica

Let U, V be two symmetric convex bodies in n and |U|, |V| their n-dimensional volumes. It is proved that there exist vectors u 1 , . . . , u n U such that, for each choice of signs ε 1 , . . . , ε n = ± 1 , one has ε 1 u 1 + . . . + ε n u n r V where r = ( 2 π e 2 ) - 1 / 2 n 1 / 2 ( | U | / | V | ) 1 / n . Hence it is deduced that if a metrizable locally convex space is not nuclear, then it contains a null sequence ( u n ) such that the series n = 1 ε n u π ( n ) is divergent for any choice of signs ε n = ± 1 and any permutation π of indices.

Currently displaying 1 – 1 of 1

Page 1