The search session has expired. Please query the service again.
Displaying 41 –
60 of
307
We prove some closed mapping theorems on -spaces with point-countable -networks. One of them generalizes Lašnev’s theorem. We also construct an example of a Hausdorff space with a countable base that admits a closed map onto metric space which is not compact-covering. Another our result says that a -space with a point-countable -network admitting a closed surjection which is not compact-covering contains a closed copy of .
Fréchet, strongly Fréchet, productively Fréchet, weakly bisequential and bisequential filters (i.e., neighborhood filters in spaces of the same name) are characterized in a unified manner in terms of their images in the Stone space of ultrafilters. These characterizations involve closure structures on the set of ultrafilters. The case of productively Fréchet filters answers a question of S. Dolecki and turns out to be the only one involving a non topological closure structure.
We introduce the notion of a coherent -ultrafilter on a complete ccc Boolean algebra, strengthening the notion of a -point on , and show that these ultrafilters exist generically under . This improves the known existence result of Ketonen [On the existence of -points in the Stone-Čech compactification of integers, Fund. Math. 92 (1976), 91–94]. Similarly, the existence theorem of Canjar [On the generic existence of special ultrafilters, Proc. Amer. Math. Soc. 110 (1990), no. 1, 233–241] can...
We characterize exactly the compactness properties of the product of κ copies of the space ω with the discrete topology. The characterization involves uniform ultrafilters, infinitary languages, and the existence of nonstandard elements in elementary extensions. We also have results involving products of possibly uncountable regular cardinals.
Let be the Isbell-Mr’owka space associated to the -family . We show that if is a countable subgroup of the group of all permutations of , then there is a -family such that every can be extended to an autohomeomorphism of . For a -family , we set for all . It is shown that for every there is a -family such that . As a consequence of this result we have that there is a -family such that whenever and , where for . We also notice that there is no -family such...
Currently displaying 41 –
60 of
307