A constructive “Closed subgroup theorem” for localic groups and groupoids
À l’aide de la théorie des itinéraires et des suites de tricotage, nous étudions la conjugaison topologique des fonctions unimodales. Nous introduisons la notion de conjugaison macroscopique, caractérisée par l’égalité des suites de tricotage. Puis nous présentons un théorème de classification des fonctions unimodales. Pour illustrer ces résultats, nous montrons que l’ensemble des solutions de l’équation de Feigenbaum contient une infinité de classes topologiques.
In this paper we consider the point character of metric spaces. This parameter which is a uniform version of dimension, was introduced in the context of uniform spaces in the late seventies by Jan Pelant, Cardinal reflections and point-character of uniformities, Seminar Uniform Spaces (Prague, 1973–1974), Math. Inst. Czech. Acad. Sci., Prague, 1975, pp. 149–158. Here we prove for each cardinal , the existence of a metric space of cardinality and point character . Since the point character can...