The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Two near-exact distributions for the generalized Wilks Lambda statistic, used to test the independence of several sets of variables with a multivariate normal distribution, are developed for the case where two or more of these sets have an odd number of variables. Using the concept of near-exact distribution and based on a factorization of the exact characteristic function we obtain two approximations, which are very close to the exact distribution but far more manageable. These near-exact distributions...
Fitting a suitable distribution to the data from a real experiment is a crucial topic in statistics. However, many of the existing distributions cannot account for the effect of environmental conditions on the components under test. Moreover, the components are usually heterogeneous, meaning that they do not share the same distribution. In this article, we aim to obtain a new generalization of the Compound Rayleigh distribution by using mixture models and incorporating the environmental conditions...
Some properties of the "new better than used in failure rate" (NBUFR) and the "new better than used in expectation" (NBUE) classes of life distributions are given. These properties include moment inequalities and moment generating functions behaviors. In addition, nonparametric estimation and testing of the survival functions of these classes are discussed.
The quotient of two linear combinations of independent chi-squares will have a generalized F distribution. Exact expressions for these distributions when the chi-square are central and those in the numerator or in the denominator have even degrees of freedom were given in Fonseca et al. (2002). These expressions are now extended for non-central chi-squares. The case of random non-centrality parameters is also considered.
The paper is concerned with the asymptotic normality of a certain statistic based on the logarithms of disjoint m-spacings. The exact and asymptotic mean and variance are computed in the case of uniform distribution on the interval [0,1]. This result is generalized to the case when the sample is drawn from a distribution with positive step density on [0,1].
Currently displaying 1 –
7 of
7