The search session has expired. Please query the service again.
               
            
            
                      
                           
        
      
        
	
	
        
    
		
			
			
                                             
                
                    
                    
                
                
    			
    				
                    
    	            
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
The aim of this article is to propose a new method for the grey-level image classification problem. We first present the classical
variational approach without and with a regularization term in order to
smooth the contours of the classified image. Then we present the general
topological asymptotic analysis, and we finally introduce its application to
the grey-level image classification problem.
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
Le Bail fitting method is procedure used in the applied crystallography mainly during the crystal structure determination. As in many other applications, there is a need for a great performance and short execution time. In this paper, we describe utilization of parallel computing for mathematical operations used in Le Bail fitting. We present an algorithm implementing this method with highlighted possible approaches to its aforementioned parallelization. Then, we propose a sample parallel version...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
The present article is an overview of some mathematical results, which
provide elements of rigorous basis for some multiscale
computations in materials science. The emphasis is laid upon atomistic
to continuum limits for crystalline materials. Various mathematical
approaches are addressed. The
setting is stationary. The relation to existing techniques used in the engineering
literature is investigated. 
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
We discuss some main points of computer-assisted proofs based
on reliable numerical computations. Such so-called self-validating numerical
methods in combination with exact symbolic manipulations result in very
powerful mathematical software tools. These tools allow proving mathematical
statements (existence of a fixed point, of a solution of an ODE, of
a zero of a continuous function, of a global minimum within a given range,
etc.) using a digital computer. To validate the assertions of the underlying
theorems...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
The shape and velocity of a sliding droplet are computed by solving the Navier-Stokes equation with free interface boundary conditions. The Galerkin finite element method
is implemented in a 2D computation domain discretized using an unstructured mesh with
triangular elements. The mesh is refined recursively at the corners (contact points). The
stationary sliding velocity is found to be strongly dependent on grid refinement, which is
a consequence of the contact line singularity resolved through...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    			
    			 
 
    			
    				Currently displaying 1 – 
                                        7 of 
                                        7