A topological asymptotic analysis for the regularized grey-level image classification problem

Didier Auroux; Lamia Jaafar Belaid; Mohamed Masmoudi

ESAIM: Mathematical Modelling and Numerical Analysis (2007)

  • Volume: 41, Issue: 3, page 607-625
  • ISSN: 0764-583X

Abstract

top
The aim of this article is to propose a new method for the grey-level image classification problem. We first present the classical variational approach without and with a regularization term in order to smooth the contours of the classified image. Then we present the general topological asymptotic analysis, and we finally introduce its application to the grey-level image classification problem.

How to cite

top

Auroux, Didier, Belaid, Lamia Jaafar, and Masmoudi, Mohamed. "A topological asymptotic analysis for the regularized grey-level image classification problem." ESAIM: Mathematical Modelling and Numerical Analysis 41.3 (2007): 607-625. <http://eudml.org/doc/250065>.

@article{Auroux2007,
abstract = { The aim of this article is to propose a new method for the grey-level image classification problem. We first present the classical variational approach without and with a regularization term in order to smooth the contours of the classified image. Then we present the general topological asymptotic analysis, and we finally introduce its application to the grey-level image classification problem. },
author = {Auroux, Didier, Belaid, Lamia Jaafar, Masmoudi, Mohamed},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Image classification; topological asymptotic expansion; image restoration.},
language = {eng},
month = {8},
number = {3},
pages = {607-625},
publisher = {EDP Sciences},
title = {A topological asymptotic analysis for the regularized grey-level image classification problem},
url = {http://eudml.org/doc/250065},
volume = {41},
year = {2007},
}

TY - JOUR
AU - Auroux, Didier
AU - Belaid, Lamia Jaafar
AU - Masmoudi, Mohamed
TI - A topological asymptotic analysis for the regularized grey-level image classification problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2007/8//
PB - EDP Sciences
VL - 41
IS - 3
SP - 607
EP - 625
AB - The aim of this article is to propose a new method for the grey-level image classification problem. We first present the classical variational approach without and with a regularization term in order to smooth the contours of the classified image. Then we present the general topological asymptotic analysis, and we finally introduce its application to the grey-level image classification problem.
LA - eng
KW - Image classification; topological asymptotic expansion; image restoration.
UR - http://eudml.org/doc/250065
ER -

References

top
  1. G. Allaire, Shape optimization by the homogenization method. Applied Mathematical Sciences 146, Springer (2002).  Zbl0990.35001
  2. G. Allaire and R. Kohn, Optimal design for minimum weight and compliance in plane stress using extremal microstructures. Eur. J. Mech. A Solids12 (1993) 839–878.  Zbl0794.73044
  3. G. Allaire, F. Jouve and A.-M. Toader, A level-set method for shape optimization. C. R. Acad. Sci. Sér. I334 (2002) 1125–1130.  Zbl1115.49306
  4. G. Allaire, F. de Gournay, F. Jouve and A.-M. Toader, Structural optimization using topological and shape sensitivity via a level set method, Internal report, n° 555, CMAP, École polytechnique. Control Cybern.34 (2005) 59-80.  Zbl1167.49324
  5. H. Ammari, M.S. Vogelius and D. Volkov, Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II - The full Maxwell equations. J. Math. Pures Appl.80 (2001) 769–814.  Zbl1042.78002
  6. S. Amstutz, I. Horchani and M. Masmoudi, Crack detection by the topological gradient method. Control Cybern.34 (2005) 119-138.  Zbl1167.74437
  7. G. Aubert and J.-F. Aujol, Optimal partitions, regularized solutions, and application to image classification. Appl. Anal.84 (2005) 15–35.  Zbl1207.94004
  8. G. Aubert and P. Kornprobst, Mathematical problems in image processing. Applied Mathematical Sciences 147, Springer-Verlag, New York (2002).  Zbl1109.35002
  9. J.-F. Aujol, G. Aubert and L. Blanc-Féraud, Wavelet-based level set evolution for classification of textured images. IEEE Trans. Image Process.12 (2003) 1634–1641.  Zbl1287.94009
  10. M. Bendsoe, Optimal topology design of continuum structure: an introduction. Technical report, Department of Mathematics, Technical University of Denmark, Lyngby, Denmark (1996).  
  11. M. Berthod, Z. Kato, S. Yu and J. Zerubia, Bayesian image classification using Markov random fields. Image Vision Comput.14 (1996) 285–293.  Zbl0825.62706
  12. C.A. Bouman and M. Shapiro, A multiscale random field model for Bayesian image segmentation. IEEE Trans. Image Process.3 (1994) 162–177.  
  13. P.G. Ciarlet, Finite Element Method for Elliptic Problems. North Holland (2002).  Zbl0999.65129
  14. L. Cohen, E. Bardinet and N. Ayache, Surface reconstruction using active contour models. SPIE Int. Symp. Optics, Imaging and Instrumentation, San Diego California USA (July 1993).  
  15. R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. Collection CEA, Masson, Paris (1987).  Zbl0708.35003
  16. X. Descombes, R. Morris and J. Zerubia, Some improvements to Bayesian image segmentation – Part one: modelling. Traitement du signal14 (1997) 373–382.  Zbl0991.68708
  17. X. Descombes, R. Morris and J. Zerubia, Some improvements to Bayesian image segmentation – Part two: classification. Traitement du signal14 (1997) 383–395.  Zbl0991.68709
  18. A. Friedman and M.S. Vogelius, Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem of continuous dependance. Arch. Rational Mech. Anal.105 (1989) 299–326.  Zbl0684.35087
  19. S. Garreau, P. Guillaume and M. Masmoudi, The topological asymptotic for PDE systems: The elasticity case. SIAM J. Control Optim.39 (1991) 17–49.  Zbl0990.49028
  20. L. Jaafar Belaid, M. Jaoua, M. Masmoudi and L. Siala, Image restoration and edge detection by topological asymptotic expansion. C. R. Acad. Sci. Paris. Ser. I Math.342 (2006) 313–318.  Zbl1086.68141
  21. Z. Kato, Modélisations markoviennes multirésolutions en vision par ordinateur - Application à la segmentation d'images SPOT. Ph.D. thesis, INRIA, Sophia Antipolis, France (1994).  
  22. M. Masmoudi, The topological asymptotic, in Computational Methods for Control Applications, R. Glowinski, H. Karawada and J. Periaux Eds., GAKUTO Internat. Ser. Math. Sci. Appl.16, Tokyo, Japan (2001) 53–72.  
  23. D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math.42 (1989) 577–685.  Zbl0691.49036
  24. N. Paragios and R. Deriche, Geodesic active regions and level set methods for supervised texture segmentation. Int. Jour. Computer Vision46 (2002) 223–247.  Zbl1012.68726
  25. T. Pavlidis and Y.-T. Liow, Integrating region growing and edge detection. IEEE Trans. Pattern Anal. Machine Intelligence12 (1990) 225–233.  
  26. P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Machine Intelligence12 (1990) 629–638.  
  27. B. Samet, S. Amstutz and M. Masmoudi, The topological asymptotic for the Helmholtz equation. SIAM J. Control Optim.42 (2003) 1523–1544.  Zbl1051.49029
  28. C. Samson, L. Blanc-Féraud, G. Aubert and J. Zerubia, A level set method for image classification. Int. J. Comput. Vision40 (2000) 187–197.  Zbl1012.68706
  29. C. Samson, L. Blanc-Féraud, G. Aubert and J. Zerubia, A variational model for image classification and restauration. IEEE Trans. Pattern Anal. Machine Intelligence22 (2000) 460–472.  Zbl1012.68706
  30. J.A. Sethian, Level set methods evolving interfaces in geometry, fluid mechanics, computer vision, and materials science. Cambride University Press (1996).  Zbl0859.76004
  31. J. Sokolowski and A. Zochowski, Topological derivatives of shape functionals for elasticity systems. Int. Ser. Numer. Math.139 (2002) 231–244.  Zbl1024.49030
  32. S. Solimini and J.M. Morel, Variational methods in image segmentation. Birkhauser (1995).  
  33. L. Vese and T. Chan, Reduced Non-Convex Functional Approximations for Image Restoration and Segmentation. UCLA CAM Report 97–56 (1997).  
  34. M.Y. Wang, D. Wang and A. Guo, A level set method for structural topology optimization. Comput. Methods Appl. Mech. Engrg.192 (2003) 227–246.  Zbl1083.74573
  35. J. Weickert, Efficient image segmentation using partial differential equations and morphology. Pattern Recogn.34 (2001) 1813–1824.  Zbl1003.68712

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.