An improved derandomized approximation algorithm for the max-controlled set problem
A vertex i of a graph G = (V,E) is said to be controlled by if the majority of the elements of the neighborhood of i (including itself) belong to M. The set M is a monopoly in G if every vertex is controlled by M. Given a set and two graphs G1 = () and G2 = () where , the monopoly verification problem (mvp) consists of deciding whether there exists a sandwich graph G = (V,E) (i.e., a graph where ) such that M is a monopoly in G = (V,E). If the answer to the mvp is No, we then consider...