Closure properties of certain families of formal languages with respect to a generalization of cyclic closure
Two deterministic finite automata are almost equivalent if they disagree in acceptance only for finitely many inputs. An automaton A is hyper-minimized if no automaton with fewer states is almost equivalent to A. A regular language L is canonical if the minimal automaton accepting L is hyper-minimized. The asymptotic state complexity s∗(L) of a regular language L is the number of states of a hyper-minimized automaton for a language finitely different from L. In this paper we show that: (1) the class...
Two deterministic finite automata are almost equivalent if they disagree in acceptance only for finitely many inputs. An automaton A is hyper-minimized if no automaton with fewer states is almost equivalent to A. A regular language L is canonical if the minimal automaton accepting L is hyper-minimized. The asymptotic state complexity s∗(L) of a regular language L is the number of states of a hyper-minimized automaton for a language ...
We proceed our work on iterated transductions by studying the closure under union and composition of some classes of iterated functions. We analyze this closure for the classes of length-preserving rational functions, length-preserving subsequential functions and length-preserving sequential functions with terminal states. All the classes we obtain are equal. We also study the connection with deterministic context-sensitive languages.
This paper is concerned with the clustering of objects whose properties cannot be described by exact data. These can only be described by fuzzy sets or by linguistic values of previously defined linguistic variables. To cluster these objects we use a generalization of classic clustering methods in which instead of similarity (dissimilarity) of objects, used fuzzy similarity (fuzzy dissimilarity) to define the clustering of fuzzy objects.
Coalgebras for endofunctors can be used to model classes of object-oriented languages. However, binary methods do not fit directly into this approach. This paper proposes an extension of the coalgebraic framework, namely the use of extended polynomial functors . This extension allows the incorporation of binary methods into coalgebraic class specifications. The paper also discusses how to define bisimulation and invariants for coalgebras of extended polynomial functors and proves many standard...
Coalgebras for endofunctors can be used to model classes of object-oriented languages. However, binary methods do not fit directly into this approach. This paper proposes an extension of the coalgebraic framework, namely the use of extended polynomial functors. This extension allows the incorporation of binary methods into coalgebraic class specifications. The paper also discusses how to define bisimulation and invariants for coalgebras of extended polynomial functors and proves many...
The seminal theorem of Cobham has given rise during the last 40 years to a lot of work about non-standard numeration systems and has been extended to many contexts. In this paper, as a result of fifteen years of improvements, we obtain a complete and general version for the so-called substitutive sequences. Let and be two multiplicatively independent Perron numbers. Then a sequence , where is a finite alphabet, is both -substitutive and -substitutive if and only if is ultimately periodic....
Cocktail is a tool for deriving correct programs from their specifications. The present version is powerful enough for educational purposes. The tool yields support for many sorted first order predicate logic, formulated in a pure type system with parametric constants (CPTS), as the specification language, a simple While-language, a Hoare logic represented in the same CPTS for deriving programs from their specifications and a simple tableau based automated theorem prover for verifying proof obligations....
The following problem motivated by investigation of databases is studied. Let be a q-ary code of length n with the properties that has minimum distance at least n − k + 1, and for any set of k − 1 coordinates there exist two codewords that agree exactly there. Let f(q, k)be the maximum n for which such a code exists. f(q, k)is bounded by linear functions of k and q, and the exact values for special k and qare determined.