Fixed-location circular arc drawing of planar graphs.
We provide an elementary proof of the fixpoint alternation hierarchy in arithmetic, which in turn allows us to simplify the proof of the modal mu-calculus alternation hierarchy. We further show that the alternation hierarchy on the binary tree is strict, resolving a problem of Niwiński.
Drawing on an analogy with temporal fixpoint logic, we relate the arithmetic fixpoint definable sets to the winning positions of certain games, namely games whose winning conditions lie in the difference hierarchy over . This both provides a simple characterization of the fixpoint hierarchy, and refines existing results on the power of the game quantifier in descriptive set theory. We raise the problem of transfinite fixpoint hierarchies.
Drawing on an analogy with temporal fixpoint logic, we relate the arithmetic fixpoint definable sets to the winning positions of certain games, namely games whose winning conditions lie in the difference hierarchy over . This both provides a simple characterization of the fixpoint hierarchy, and refines existing results on the power of the game quantifier in descriptive set theory. We raise the problem of transfinite fixpoint hierarchies.
In this paper some research trends in the field of Information Retrieval are presented. The focus is on the definition of flexible systems, i.e. systems that can represent and manage the vagueness and uncertainty which is characteristic of the process of information searching and retrieval. In this paper the application of soft computing techniques is considered, in particular fuzzy set theory.
In this paper we present a fuzzy model for representing documents having a hierarchical structure and possibly containing multimedia information. We consider an archive containing documents with distinct (heterogeneous) logical structures. We also propose a flexible query language for expressing soft selection conditions on the structured documents. The documents’ content is organized into thematic (topical) sections where the index terms play a distinct role. The proposed document representation...
Carlitz a défini sur une fonction et une série formelle , analogues respectivement à la fonction de Riemann et au réel . Yu a montré, en utilisant les modules de Drinfeld, que est transcendant pour tout non divisible par . Nous donnons ici une preuve «automatique» de la transcendance de pour , en utilisant le théorème de Christol, Kamae, Mendès France et Rauzy.
La fonction de récurrence d’une suite symbolique compte au bout de combien de temps on voit tous les mots de longueur . Nous la calculons explicitement pour les suites d’Arnoux-Rauzy, définies par des conditions combinatoires qui en font une généralisation naturelle des suites sturmiennes. Puis nous répondons à une question de Morse et Hedlund (1940) en montrant que ne peut avoir une limite finie pour aucune suite non ultimement périodique.
In this paper methods and results related to the notion of minimal forbidden words are applied to the fragment assembly problem. The fragment assembly problem can be formulated, in its simplest form, as follows: reconstruct a word from a given set of substrings (fragments) of a word . We introduce an hypothesis involving the set of fragments and the maximal length of the minimal forbidden factors of . Such hypothesis allows us to reconstruct uniquely the word from the set in linear...
In this paper methods and results related to the notion of minimal forbidden words are applied to the fragment assembly problem. The fragment assembly problem can be formulated, in its simplest form, as follows: reconstruct a word w from a given set I of substrings (fragments) of a word w. We introduce an hypothesis involving the set of fragments I and the maximal length m(w) of the minimal forbidden factors of w. Such hypothesis allows us to reconstruct uniquely the word w from the set I in linear...