Displaying 141 – 160 of 166

Showing per page

Stability analysis of high-order Hopfield-type neural networks based on a new impulsive differential inequality

Yang Liu, Rongjiang Yang, Jianquan Lu, Bo Wu, Xiushan Cai (2013)

International Journal of Applied Mathematics and Computer Science

This paper is devoted to studying the globally exponential stability of impulsive high-order Hopfield-type neural networks with time-varying delays. In the process of impulsive effect, nonlinear and delayed factors are simultaneously considered. A new impulsive differential inequality is derived based on the Lyapunov-Razumikhin method and some novel stability criteria are then given. These conditions, ensuring the global exponential stability, are simpler and less conservative than some of the previous...

Stability of impulsive hopfield neural networks with Markovian switching and time-varying delays

Ramachandran Raja, Rathinasamy Sakthivel, Selvaraj Marshal Anthoni, Hyunsoo Kim (2011)

International Journal of Applied Mathematics and Computer Science

The paper is concerned with stability analysis for a class of impulsive Hopfield neural networks with Markovian jumping parameters and time-varying delays. The jumping parameters considered here are generated from a continuous-time discrete-state homogenous Markov process. By employing a Lyapunov functional approach, new delay-dependent stochastic stability criteria are obtained in terms of linear matrix inequalities (LMIs). The proposed criteria can be easily checked by using some standard numerical...

Sum-fuzzy implementation of a choice function using artificial learning procedure with fixed fraction

Alina Constantinescu (2007)

Applications of Mathematics

In one if his paper Luo transformed the problem of sum-fuzzy rationality into artificial learning procedure and gave an algorithm which used the learning rule of perception. This paper extends the Luo method for finding a sum-fuzzy implementation of a choice function and offers an algorithm based on the artificial learning procedure with fixed fraction. We also present a concrete example which uses this algorithm.

The conjugacy between Cascades generated by a weakly nonlinear system and the Euler method of a flow

Dariusz Jabłoński (2002)

Applicationes Mathematicae

Sufficient conditions for the existence of a topological conjugacy between a cascade obtained from a weakly nonlinear flow by fixing the time step and a cascade obtained by the Euler method are analysed. The aim of this paper is to provide relations between constants in the Fečkan theorem. Given such relations an implementation of a weakly nonlinear neuron is possible.

Time-varying time-delay estimation for nonlinear systems using neural networks

Yonghong Tan (2004)

International Journal of Applied Mathematics and Computer Science

Nonlinear dynamic processes with time-varying time delays can often be encountered in industry. Time-delay estimation for nonlinear dynamic systems with time-varying time delays is an important issue for system identification. In order to estimate the dynamics of a process, a dynamic neural network with an external recurrent structure is applied in the modeling procedure. In the case where a delay is time varying, a useful way is to develop on-line time-delay estimation mechanisms to track the time-delay...

Towards robustness in neural network based fault diagnosis

Krzysztof Patan, Marcin Witczak, Józef Korbicz (2008)

International Journal of Applied Mathematics and Computer Science

Challenging design problems arise regularly in modern fault diagnosis systems. Unfortunately, classical analytical techniques often cannot provide acceptable solutions to such difficult tasks. This explains why soft computing techniques such as neural networks become more and more popular in industrial applications of fault diagnosis. Taking into account the two crucial aspects, i.e., the nonlinear behaviour of the system being diagnosed as well as the robustness of a fault diagnosis scheme with...

Currently displaying 141 – 160 of 166