Inverse du Laplacien discret dans le problème de Poisson-Dirichlet à deux dimensions sur un rectangle
Jean Chanzy[1]
- [1] Université de Paris-Sud, Bâtiment 425 ; F-91405 Orsay Cedex.
Annales de la faculté des sciences de Toulouse Mathématiques (2006)
- Volume: 15, Issue: 3, page 485-552
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topReferences
top- B. L. Buzbee, G. H. Golub, C. W. Nielson, On direct methods for solving Poisson’s equations, SIAM Journal of Numerical Analysis 7 (Décembre 1970), 627-656 Zbl0217.52902MR287717
- A. Böttcher, B. Silberman, Asymptotics of Toeplitz Matrices, (1983), Akademie-Verlag, Berlin MR734173
- A. Böttcher, B. Silberman, Analysis of Toeplitz Operators, (1990), Springer Zbl0732.47029MR1071374
- A. Böttcher, B. Silberman, Introduction to Large Truncated Toeplitz Matrices, (1999), Springer Zbl0916.15012MR1724795
- J. Chanzy, Inversion d’un opérateur de Toeplitz tronqué à symbole matriciel et théorèmes-limite de Szegö, (2004)
- J. Chanzy, Opérateurs de Toeplitz à symbole matriciel et Laplacien discret, (2004)
- R. H. Chan, Generalization of Strang’s Preconditioner with Applications to Toeplitz Least Squares Problems, Journal of Numerical Linear Algebra with Applications (1996) Zbl0842.65029
- F. W. Dorr, The Direct Solution of the Discrete Poisson Equation on a Rectangle, SIAM Review 12 (1970) Zbl0208.42403MR266447
- R. G. Douglas, Banach Algebra Techniques in Operator Theory, (1972), Academic Press Zbl0247.47001MR361893
- R. G. Douglas, Banach Algebra Techniques in theory of Toeplitz operators, (1973), American mathematical society Zbl0252.47025MR361894
- B. Duplantier, F. David, Exact Partition Functions and Correlation Functions of Multiple Hamiltonian Walks on the Manhattan Lattice, J.Stat.Phys. 51 (1988), 327-434 Zbl1086.82501MR952941
- I. Gohberg, S. Goldberg, Basic Operator Theory, (1981), Birkhaüser-Verlag, Basel Zbl0458.47001MR632943
- I. Gohberg, S. Goldberg, M. A. Kaashoek, Class of Linear Operators, I (1990), Birkhaüser-Verlag, Basel Zbl0745.47002MR1130394
- I. Gohberg, S. Goldberg, M. A. Kaashoek, Class of Linear Operators, II (1993), Birkhaüser-Verlag, Basel Zbl0789.47001MR1246332
- L. Greengard, J.-Y. Lee, A Direct Adaptive Poisson Solver of Arbitrary Order Accuracy, (1995) Zbl0851.65090
- I. Gohberg, P. Lancaster, L. Rodman, Matrix Polynomials, (1982), Academic Press Zbl0482.15001MR662418
- I. Gohberg, P. Lancaster, L. Rodman, Matrices and Indefinite Scalar Products, (1983), Birkhaüser-Verlag, Basel Zbl0513.15006MR859708
- I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products, (1963), Academic Press, Inc. Zbl0918.65002
- U. Grenander, G. Szegö, Toeplitz Forms and their applications, (1958), Chelsea Publishing Company, New York Zbl0611.47018MR94840
- G. H. Hardy, Divergent Series, (1949), Oxford at the Clarendon Press Zbl0032.05801MR30620
- R. A. Horn, C. R. Johnson, Matrix Analysis, (1985), Cambridge University Press Zbl0082.28201MR97688
- R. A. Horn, C. R. Johnson, Topics in matrix analysis, (1986), Cambridge University Press Zbl0576.15001MR832183
- H. Helson, D. Lowdenslager, Prediction theory and Fourier series in several variables, Acta Mathematica 99 (1958), 165-202 Zbl0082.28201
- G. Y. Hu, J. Y. Ryu, R. F. O’Connel, Analytical solution of the generalized discrete Poisson equation, J. Phys.A :Math.Gen. 31 (1998), 9279-9282 Zbl0940.65111MR1662181
- Z. Jomaa, C. Macaskill, The embedded finite difference method for the Poisson equation in a domain with an irregular boundary and Dirichlet boundary conditions, (2003) Zbl1061.65107MR2145390
- R. Kenyon, The asymptotic determinant of the discrete Laplacian, (1998) Zbl0982.05013
- V. Kapin, A method for numerical solution 2-D Poisson’s equation with image fields, (2002)
- A. Martin, Équations aux dérivées partielles, Exercices résolus, (1991), Dunod Université Zbl0773.35001
- M. Marcus, H. Minc, A survey of Matrix theory and matrix inequalities, (1964), Allyn and Bacon, Inc., Boston Zbl0126.02404MR162808
- N. V. Nikolski, Operators, Functions, and Systems : An Easy Reading, American mathematical society (2002)
- A. J. Roberts, Simple and fast multigrid solution of Poisson’s equation using diagonally oriented grids, ANZIAM J 43(E) (2001), E1-E36 Zbl1012.76078MR1845841
- H. Reinhard, Équations aux dérivées partielles, (1991), Dunod Université Zbl0623.35002MR881608
- G. F. Roach, Green’s Functions Introductory theory with applications, (1970), Van Nostrand Reinhold Company, London Zbl0186.47104MR277804
- M. Rosenblum, J. Rovnyak, Hardy Classes and Operator Theory, (1985), Oxford university press Zbl0586.47020MR822228
- M. Rosenblum, J. Rovnyak, Topics in Hardy classes and univalent functions, (1994), Birkhaüser-Verlag, Basel Zbl0816.30001MR1307384
- Ph. Rambour, J. M. Rinkel, A. Seghier, Développement asymptotique de l’inverse de matrices de Toeplitz et noyaux de Green, (2000)
- D. Serre, Les matrices, Théorie et pratique, (2001), Dunod Zbl1008.15002
- F. L. Spitzer, C. J. Stone, A class of Toeplitz forms and their applications to probability theory, Illinois J.Math. 4 (1960), 253-277 Zbl0124.34403MR117773
- U. Schumann, R. A. Sweet, A direct method for the solution of Poisson’s equation with Neumann boundary conditions on a staggered grid of arbitrary size, J. Comp. Phys. 20 (1970), 171-182 MR395258
- U. Schumann, R. A. Sweet, Direct Poisson equation solver for potential and pressure fields on a staggered grid with obstacles, Lect. Notes in Physics 59 (1976), 398-403 Zbl0366.76008
- H. Widom, Asymptotic Behavior of Block Toeplitz Matrices and Determinants, Advances in Mathematics 13 (1974), 284-322 Zbl0281.47018MR409511
- H. Widom, Asymptotic Behavior of Block Toeplitz Matrices and Determinants, II, Advances in Mathematics 21 (1976), 1-29 Zbl0344.47016MR409512
- A. Yakhot, Z. Yosibash, The Poisson Equation with Local Nonregular Similarities, (2000) Zbl0987.65104
- F. Zhang, Matrix Theory, Basic Results and Techniques, (1999), Springer-Verlag Zbl0948.15001MR1691203
- C. Zuily, H. Queffélec, Éléments d’Analyse pour l’Agrégation, (1995), Masson