Continuous dependence of the entropy solution of general parabolic equation

Mohamed Maliki[1]

  • [1] Université Hassan II, F.S.T. Mohammedia, B.P. 146 Mohammedia, Maroc.

Annales de la faculté des sciences de Toulouse Mathématiques (2006)

  • Volume: 15, Issue: 3, page 589-598
  • ISSN: 0240-2963

Abstract

top
We consider the general parabolic equation : u t - Δ b ( u ) + d i v F ( u ) = f in Q = ] 0 , T [ × N , T > 0 with u 0 L ( N ) , for a . e t ] 0 , T [ , f ( t ) L ( N ) and 0 T f ( t ) L ( N ) d t < . We prove the continuous dependence of the entropy solution with respect to F , b , f and the initial data u 0 of the associated Cauchy problem.This type of solution was introduced and studied in [MT3]. We start by recalling the definition of weak solution and entropy solution. By applying an abstract result (Theorem 2.3), we get the continuous dependance of the entropy solution. The contribution of the present work consists of considering the equation in the whole space n instead of a bounded domain and considering a bounded data instead of integrable data.

How to cite

top

Maliki, Mohamed. "Continuous dependence of the entropy solution of general parabolic equation." Annales de la faculté des sciences de Toulouse Mathématiques 15.3 (2006): 589-598. <http://eudml.org/doc/10012>.

@article{Maliki2006,
abstract = {We consider the general parabolic equation :$ u_t - \Delta b(u) + div \ F(u)= f$ in $Q=]0,T[\times \mathbb\{R\}^N , \ T&gt;0 $ with $\ \ \displaystyle u_0 \in L^\infty (\mathbb\{R\}^N),$$\ \ \hbox\{for\}\ \ a.e\ \ t\in ]0,T[, \ \ f(t) \in L^\infty (\mathbb\{R\}^N) $ and $ \displaystyle \int _0^T \left\Vert f(t)\right\Vert _\{\displaystyle L^\infty ( \mathbb\{R\}^N)\}dt&lt; \infty .$We prove the continuous dependence of the entropy solution with respect to $F,$$b,$$f$ and the initial data $u_0$ of the associated Cauchy problem.This type of solution was introduced and studied in [MT3]. We start by recalling the definition of weak solution and entropy solution. By applying an abstract result (Theorem 2.3), we get the continuous dependance of the entropy solution. The contribution of the present work consists of considering the equation in the whole space $\mathbb\{R\}^n$ instead of a bounded domain and considering a bounded data instead of integrable data.},
affiliation = {Université Hassan II, F.S.T. Mohammedia, B.P. 146 Mohammedia, Maroc.},
author = {Maliki, Mohamed},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {bounded data},
language = {eng},
number = {3},
pages = {589-598},
publisher = {Université Paul Sabatier, Toulouse},
title = {Continuous dependence of the entropy solution of general parabolic equation},
url = {http://eudml.org/doc/10012},
volume = {15},
year = {2006},
}

TY - JOUR
AU - Maliki, Mohamed
TI - Continuous dependence of the entropy solution of general parabolic equation
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2006
PB - Université Paul Sabatier, Toulouse
VL - 15
IS - 3
SP - 589
EP - 598
AB - We consider the general parabolic equation :$ u_t - \Delta b(u) + div \ F(u)= f$ in $Q=]0,T[\times \mathbb{R}^N , \ T&gt;0 $ with $\ \ \displaystyle u_0 \in L^\infty (\mathbb{R}^N),$$\ \ \hbox{for}\ \ a.e\ \ t\in ]0,T[, \ \ f(t) \in L^\infty (\mathbb{R}^N) $ and $ \displaystyle \int _0^T \left\Vert f(t)\right\Vert _{\displaystyle L^\infty ( \mathbb{R}^N)}dt&lt; \infty .$We prove the continuous dependence of the entropy solution with respect to $F,$$b,$$f$ and the initial data $u_0$ of the associated Cauchy problem.This type of solution was introduced and studied in [MT3]. We start by recalling the definition of weak solution and entropy solution. By applying an abstract result (Theorem 2.3), we get the continuous dependance of the entropy solution. The contribution of the present work consists of considering the equation in the whole space $\mathbb{R}^n$ instead of a bounded domain and considering a bounded data instead of integrable data.
LA - eng
KW - bounded data
UR - http://eudml.org/doc/10012
ER -

References

top
  1. B. P. Andreianov, Ph. Bénilan, S. N. Kruskhov, L 1 theory of scalar conservation law with continuous flux function, J. Funct. Anal. 171 (2000), 15-33 Zbl0944.35048MR1742856
  2. H. W. Alt, S. Luckhauss, Quasi-linear elliptic-parabolic differential equations, Math.Z. 183 (1983), 311-341 Zbl0497.35049MR706391
  3. Ph. Bénilan, M. G. Crandall, A. Pazy, Evolution Equation governed by Accretive operators 
  4. Ph. Bénilan, B. Gariepy, Strong solution L 1 of degenerate parabolic equation, J. of Diff. Equat. 119 (1995), 473-502 Zbl0828.35050MR1340548
  5. Ph. Bénilan, S. N. Kruskhov, Quasilinear first order equations with continuous non linearities, Russian Acad. Sci. Dokl. Math. 50 (1995), 391-396 Zbl0880.35027MR1316937
  6. Ph. Bénilan, H. Touré, Sur l’équation générale u t = ϕ ( u ) x x - ψ ( u ) x + v , C.R. Acad. Sc. Paris, série 1 299 (1984), 919-922 Zbl0586.35016MR774668
  7. Ph. Bénilan, H. Touré, Sur l’équation générale u t = a ( . , u , ϕ ( . , u ) x ) x dans L 1 I. Etude du problème stationnaire, in Evolution equations, Lecture Notes Pure and Appl. Math. 168 (1995) Zbl0820.34011
  8. Ph. Bénilan, H. Touré, Sur l’équation générale u t = a ( . , u , ϕ ( . , u ) x ) x dans L 1 II. Le problème d’évolution, Ann. Inst. Henri Poincaré 12 (1995), 727-761 Zbl0839.35068MR1360542
  9. Ph. Bénilan, P. Wittbold, On mild and weak solution of elliptic-Parabolic Problems, Adv. in Diff. Equat. 1 (1996), 1053-1072 Zbl0858.35064MR1409899
  10. J. Carrillo, On the uniquness of the solution of the evolution DAM problem, Nonlinear Analysis 22 (1999), 573-607 Zbl0810.76086MR1266545
  11. J. Carrillo, Entropy solutions for nonlinear degenerate problems, Arch. Ratio. Mech. Anal. 147 (1999), 269-361 Zbl0935.35056MR1709116
  12. J. Carrillo, Unicité des solutions du type Kruskhov pour des problèmes elliptiques avec des termes de transport non linéaires, C. R. Acad. Sc. Paris, Série I 33 (1986) Zbl0623.35030MR854731
  13. J. Carrillo, P. Wittbold, Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems, J. Diff. Equation 156 (1999), 93-121 Zbl0932.35129MR1701806
  14. J. I. Diaz, F. Thelin, On a nonlinear parabolic problem arising in some models related to turbulent flows, SIAM. J. Math. Anal. 25 (1994), 1085-1111 Zbl0808.35066MR1278892
  15. G. Gagneux, M. M. Tort, Unicité des solutions faibles d’équations de diffusion convection, C. R. Acad. SC. Paris, Série I 318 (1994) Zbl0826.35057MR1278152
  16. S. N. Kruskhov, E. Yu. Panov, Conservative quasilinear first order law in the class of locally sommable functins, Dokl. Akad. Nauk. S.S.S.R. 220 (1985), 233-26 
  17. S. N. Kruskhov, E. Yu. Panov, Conservative quasilinear first order laws with an infinite domain of dependence on the initial data, Soviet. Math. Dokl. 42 (1991), 316-321 Zbl0789.35039MR1118483
  18. O. A. Ladyzenskaja, V. A. Solonnikov, N. N. Ural’ceva, Linear and quasilinear equations of parabolic type, Transl. of Math. Monographs 23 (1968) Zbl0174.15403MR241822
  19. M. Maliki, H. Touré, Solution généralisée locale d’une équation parabolique quasi linéaire dégénérée du second ordre, Ann. Fac. Sci. Toulouse VII (1998), 113-133 Zbl0914.35068MR1658456
  20. M. Maliki, H. Touré, Dépendence continue de solutions généralisées locales, Ann. Fac. Sci. Toulouse X (2001), 701-711 Zbl1029.35027MR1944257
  21. M. Maliki, H. Touré, Uniqueness entropy solutions for nonlinear degenerate parabolic problem, Journal of Evolution equation 3 (2003), 603-622 Zbl1052.35106MR2058053
  22. J. Yin, On the uniqueness and stability of BV solutions for nonlinear diffusion equations, Comm. Part. Diff. Equat. 15 (1990), 1671-1683 Zbl0726.35063MR1080617

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.