Renormalized solution for nonlinear degenerate problems in the whole space
Mohamed Maliki[1]; Adama Ouedraogo[2]
- [1] Department of Mathematics BP 146, Hassan II University Mohammedia (Morocco)
- [2] Department of Mathematics 03 BP 7021 University of Ouagadougou 03 (Burkina Faso)
Annales de la faculté des sciences de Toulouse Mathématiques (2008)
- Volume: 17, Issue: 3, page 597-611
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topMaliki, Mohamed, and Ouedraogo, Adama. "Renormalized solution for nonlinear degenerate problems in the whole space." Annales de la faculté des sciences de Toulouse Mathématiques 17.3 (2008): 597-611. <http://eudml.org/doc/10097>.
@article{Maliki2008,
abstract = {We consider the general degenerate parabolic equation :\[ u\_t - \Delta b(u) + div\ \tilde\{F\}(u) = f \hspace\{28.45274pt\}\hbox\{in\}\ \ Q\ =\ ]0,T[\times \mathbb\{R\}^N , \ \ T>0. \]We suppose that the flux $\tilde\{F\}$ is continuous, $b$ is nondecreasing continuous and both functions are not necessarily Lipschitz. We prove the existence of the renormalized solution of the associated Cauchy problem for $L^1$ initial data and source term. We establish the uniqueness of this type of solution under a structure condition $\tilde\{F\}(r)=F(b(r))$ and an assumption on the modulus of continuity of $b$. The novelty of this work is that $\Omega =\mathbb\{R\}^\{N\}$, $u_\{0\}$, $f\in L^\{1\}$, $b$, $\tilde\{F\}$ are not Lipschitz functions and the techniques are different from those developed in the previous works.},
affiliation = {Department of Mathematics BP 146, Hassan II University Mohammedia (Morocco); Department of Mathematics 03 BP 7021 University of Ouagadougou 03 (Burkina Faso)},
author = {Maliki, Mohamed, Ouedraogo, Adama},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {non-Lipschitz flux},
language = {eng},
month = {6},
number = {3},
pages = {597-611},
publisher = {Université Paul Sabatier, Toulouse},
title = {Renormalized solution for nonlinear degenerate problems in the whole space},
url = {http://eudml.org/doc/10097},
volume = {17},
year = {2008},
}
TY - JOUR
AU - Maliki, Mohamed
AU - Ouedraogo, Adama
TI - Renormalized solution for nonlinear degenerate problems in the whole space
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2008/6//
PB - Université Paul Sabatier, Toulouse
VL - 17
IS - 3
SP - 597
EP - 611
AB - We consider the general degenerate parabolic equation :\[ u_t - \Delta b(u) + div\ \tilde{F}(u) = f \hspace{28.45274pt}\hbox{in}\ \ Q\ =\ ]0,T[\times \mathbb{R}^N , \ \ T>0. \]We suppose that the flux $\tilde{F}$ is continuous, $b$ is nondecreasing continuous and both functions are not necessarily Lipschitz. We prove the existence of the renormalized solution of the associated Cauchy problem for $L^1$ initial data and source term. We establish the uniqueness of this type of solution under a structure condition $\tilde{F}(r)=F(b(r))$ and an assumption on the modulus of continuity of $b$. The novelty of this work is that $\Omega =\mathbb{R}^{N}$, $u_{0}$, $f\in L^{1}$, $b$, $\tilde{F}$ are not Lipschitz functions and the techniques are different from those developed in the previous works.
LA - eng
KW - non-Lipschitz flux
UR - http://eudml.org/doc/10097
ER -
References
top- Ammar (K.), Wittbold (P.).— Existence of renormalized solution of degnerate elliptic-parbolic problems Proc. Royal Soc. Edinb.113A, p. 477-496, (2003). Zbl1077.35103MR1983682
- Andreianov (B.P.), Igbida (N.).— Uniqueness for Nonlinear degenerate diffusion-convection problem, to appear in J. Diff. Equat. Zbl1096.35064
- Andreianov (B.P.), Bénilan (Ph.), Kruzhkov (S.N.).— theory of scalar conservation law with continuous flux function. J. Funct. Anal, 171 p. 415-33 (2000). Zbl0944.35048
- Alt (H.W.), Luckhauss (S.).— Quasi-linear elliptic-parabolic differential equations, Math.Z., 183, p. 311-341 (1983). Zbl0497.35049
- Bénilan (Ph.), Crandall (M.G.), Pazy (A.).— Evolution Equation governed by Accretive operators (book to appear).
- Bénilan (Ph.), Boccardo (L.), Gariepy (B.), Pierre (M.), Vazquez (J.L.).— An theory of exsitence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scul. Norm. Sup. 22(2) p. 241-273, (1995). Zbl0866.35037MR1354907
- Butos (M.C.), Concha (F.), Bürger (R.), Tory (E.M.).— Sedimentation and thickenning : phenomenological foundation and mathematical theory, Kluwer Academic, Dordrecht, (1999). Zbl0936.76001MR1747460
- Blanchart (D.), Murat (F.).— Renormalized solutions of nonlinear parabolic problems with data : existence and uniqueness Proc.royal Soc. Edinb A 127, p. 1137-1152, (1997). Zbl0895.35050MR1489429
- Blanchard (D.), Redouane (H.).— Solutions renormalisées d’équations paraboliques à deux non linéaritées. C.R.A.S. Paris 319, p. 831-847, (1994). Zbl0810.35038
- Bénilan (Ph.), Gariepy (B.).— Strong solution of degenerate parabolic equation. J. Diff. Equat., 119, p. 473-502 (1995). Zbl0828.35050MR1340548
- Bénilan (Ph.), Kruzhkov (S.N.).— Quasilinear first order equations with continuous non linearities. Russian Acad. Sci. Dokl. Math. Vol 50 , p. 391-396 (1995). Zbl0880.35027MR1316937
- Bénilan (Ph.), Touré (H.).— Sur l’équation générala C.R. Acad. Sc. Paris, serie 1, 299, 18 (1984). Zbl0586.35016
- Bénilan (Ph.), Touré (H.).— Sur l’équation générale dans . Etude du problème stationnaire, in Evolution equations, Lecture Notes Pure and Appl. Math Vol. 168, (1995).
- Bénilan (Ph.), Touré (H.).— Sur l’équation générale dans . Le problème d’évolution, Ann. Inst. Henri Poincaré, vol. 12, 6, p. 727-761 (1995). Zbl0839.35068
- Bénilan (Ph.), Wittbold (P.).— On mild and weak solution of elliptic-Parabolic Problems. Adv. in Diff. Equat. Vol. 1 (6) p. 1053-1072 (1996). Zbl0858.35064MR1409899
- Carrillo (J.).— On the uniquness of the solution of the evolution DAM problem, Nonlinear Analysis, Vol 22, , p. 573-607 (1999). Zbl0810.76086MR1266545
- Carrillo (J.).— Entropy solutions for nonlinear degenerate problems. Arch. Ratio. Mech. Anal. 147, p. 269-361 (1999). Zbl0935.35056MR1709116
- Carrillo (J.).— Unicité des solutions du type Kruskov pour des problèmes elliptiques avec des termes de transport non linéaires C. R. Acad. Sc. Paris, t 33, Serie I, , (1986). Zbl0623.35030MR854731
- Carrillo (J.), Wittbold (P.).— Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems. J. Diff. Equat. 156, p. 93-121 (1999). Zbl0932.35129MR1701806
- Chavent (G.), Jaffre (J.).— Mathematical models and finite elements for reservoir simulation, North Holland, Amsterdam, (1986). Zbl0603.76101
- Diaz (J.I.), Thelin (F.).— On a nonlinear parabolic problem arising in some models related to turbulent flows, SIAM. J. Math. Anal. ; 25, p. 1085-1111 (1994). Zbl0808.35066MR1278892
- Gagneux (G.).— Tort (M.M.), Unicité des solutions faibles d’équations de diffusion convection, C. R. Acad. SC. Paris, t 318, Série I, p. 919-924 (1994). Zbl0826.35057MR1278152
- Hudjaev (S.N.), Vol’pert (A.I.).— Cauchy’s problem for degenerate second order quasilinear parabolic equation, Math. USSR-Sbornik, Vol 7, , p. 365-387 (1969). Zbl0191.11603
- Igbida (N.), Urbano (J.M.).— Uniqueness for degenerate problems, NoDEA 10, p. 287-307 (2003). Zbl1024.35054MR1994812
- Igbida (N.), Urbano (J.M.).— Continuity results for certain nonlinear parabolic PDEs, Preprint LAMFA, Université de Picadie Jules Vernes.
- Igbida (N.), Wittbold (P.).— Renormalized solution for stephan type problem : Existence and Uniqueness, Preprint LAMFA, Université de Picadie Jules Vernes.
- Kruzhkov (S.N.), Panov (E. Yu.).— Conservative quasilinear first order law in the class of locally sommable functins, Dokl. Akad. Nauk. S.S.S.R. 220, 1 p. 233-26 ; english traduction in soviet Math. Dokl. 16 (1985).
- Landes (R.).— On the existence of weak solutions for quasilinear parabolic initial boundary-value problems.Proc. Royal Soc. Edinb. 89A:217-237, (1981). Zbl0493.35054MR635759
- Ladyzenskaja (O.A.), Solonnikov (V.A.) et Ural’ceva (N.N.).— Linear and quasilinear equations of parabolic type, Transl. of Math. Monographs 23 (1968). Zbl0174.15403MR241822
- Maliki (M.).— Continuous dependence of the entropy solution of general parabolic equation, Ann. Fac. Sci. Toulouse. Vol.XV,n¡3, p. 589-598 (2006). Zbl1122.35012MR2246415
- Bendahmane (M.), Karlsen (K.H.).— Renormalized solutions for quasilinear anisotropic degenerate parabolic equations, Siam J. Marth.Anal. Vol.36, N0.2, pp.405-422, (2004). Zbl1090.35104MR2111783
- Maliki (M.), Touré (H.).— Solution généralisée locale d’une équation parabolique quasi linéaire dégénérée du second ordre. Ann. Fac. Sci. Toulouse. Vol. VII 1, (1998) 113-133. Zbl0914.35068MR1658456
- Maliki (M.), Touré ( H.).— Dépendence continue de solutions généralisées locales, Ann. Fac. Sci. Toulouse. Vol.X 4, (2001) 701-711. Zbl1029.35027MR1944257
- Maliki (M.), Touré ( H.).— Uniqueness of entropy solutions for nonlinear degenerate parabolic problem Journal of Evolution equation 3 (2003), no. 4, 603–622. (Birkhauser). Zbl1052.35106MR2058053
- Kruzhkov (S.N.), Panov E.Yu..— Conservative quasilinear first order laws with an infinite domain of dependence on the initial data, Soviet. Math. Dokl. Vol. 42, 2, p. 316-321 (1991). Zbl0789.35039MR1118483
- Otto (P.).— contraction and uniqueness for quasilinear elliptic-parobolic equations J. Diff. Eqa. 131, p. 20-38 (1996). Zbl0862.35078MR1415045
- Yin (J.).— On the uniqueness and stability of BV solutions for nonlinear diffusion equations, Comm. Part. Diff. Equat. 15, 12, p. 1671-1683 (1990). Zbl0726.35063MR1080617
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.