The inviscid limit for density-dependent incompressible fluids
- [1] Centre de Mathématiques, Univ. Paris 12, 61 av. du Général de Gaulle, 94010 Créteil Cedex, France
Annales de la faculté des sciences de Toulouse Mathématiques (2006)
- Volume: 15, Issue: 4, page 637-688
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topDanchin, Raphaël. "The inviscid limit for density-dependent incompressible fluids." Annales de la faculté des sciences de Toulouse Mathématiques 15.4 (2006): 637-688. <http://eudml.org/doc/10018>.
@article{Danchin2006,
abstract = {This paper is devoted to the study of smooth flows of density-dependent fluids in $\{\mathbb\{R\}\}^N$ or in the torus $\{\mathbb\{T\}\}^N$. We aim at extending several classical results for the standard Euler or Navier-Stokes equations, to this new framework.Existence and uniqueness is stated on a time interval independent of the viscosity $\mu $ when $\mu $ goes to $0$. A blow-up criterion involving the norm of vorticity in $L^1(0,T;L^\infty )$ is also proved. Besides, we show that if the density-dependent Euler equations have a smooth solution on a given time interval $[0,T_0]$, then the density-dependent Navier-Stokes equations with the same data and small viscosity have a smooth solution on $[0,T_0]$. The viscous solution tends to the Euler solution when the viscosity $\mu $ goes to $0$. The rate of convergence in $L^2$ is of order $\mu $.An appendix is devoted to the proof of elliptic estimates in Sobolev spaces with positive or negative regularity indices, interesting for their own sake.},
affiliation = {Centre de Mathématiques, Univ. Paris 12, 61 av. du Général de Gaulle, 94010 Créteil Cedex, France},
author = {Danchin, Raphaël},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {incompressible nonhomogeneous fluids},
language = {eng},
number = {4},
pages = {637-688},
publisher = {Université Paul Sabatier, Toulouse},
title = {The inviscid limit for density-dependent incompressible fluids},
url = {http://eudml.org/doc/10018},
volume = {15},
year = {2006},
}
TY - JOUR
AU - Danchin, Raphaël
TI - The inviscid limit for density-dependent incompressible fluids
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2006
PB - Université Paul Sabatier, Toulouse
VL - 15
IS - 4
SP - 637
EP - 688
AB - This paper is devoted to the study of smooth flows of density-dependent fluids in ${\mathbb{R}}^N$ or in the torus ${\mathbb{T}}^N$. We aim at extending several classical results for the standard Euler or Navier-Stokes equations, to this new framework.Existence and uniqueness is stated on a time interval independent of the viscosity $\mu $ when $\mu $ goes to $0$. A blow-up criterion involving the norm of vorticity in $L^1(0,T;L^\infty )$ is also proved. Besides, we show that if the density-dependent Euler equations have a smooth solution on a given time interval $[0,T_0]$, then the density-dependent Navier-Stokes equations with the same data and small viscosity have a smooth solution on $[0,T_0]$. The viscous solution tends to the Euler solution when the viscosity $\mu $ goes to $0$. The rate of convergence in $L^2$ is of order $\mu $.An appendix is devoted to the proof of elliptic estimates in Sobolev spaces with positive or negative regularity indices, interesting for their own sake.
LA - eng
KW - incompressible nonhomogeneous fluids
UR - http://eudml.org/doc/10018
ER -
References
top- Antontsev (S.), Kazhikhov (A.), Monakhov (V.), Boundary value problems in mechanics of nonhomogeneous fluids, 22 (1990), North-Holland Publishing Co., Amsterdam Zbl0696.76001MR1035212
- Beale (J.), Kato (T.), Majda (A.), Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Communications in Mathematical Physics 94 (1984), 61-66 Zbl0573.76029MR763762
- Bony (J.-M.), Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, 14 (1981), 209-246 Zbl0495.35024MR631751
- Chemin (J.-Y.), Théorèmes d’unicité pour le système de Navier-Stokes tridimensionnel, Journal d’Analyse Mathématique 77 (1999), 25-50 Zbl0938.35125MR1753481
- Constantin (P.), Foias (C.), Navier-Stokes equations, (1988), University of Chicago Press Zbl0687.35071MR972259
- Danchin (R.), A few remarks on the Camassa-Holm equation, Differential and Integral Equations 14 (2001), 953-988 Zbl1161.35329MR1827098
- Danchin (R.), Density-dependent incompressible fluids in critical spaces, Proceedings of the Royal Society of Edinburgh 133A (2003), 1311-1334 Zbl1050.76013MR2027648
- Danchin (R.), Local and global well-posedness results for flows of inhomogeneous viscous fluids, Advances in Differential Equations 9 (2004), 353-386 Zbl1103.35085MR2100632
- Danchin (R.), Estimates in Besov spaces for transport and transport-diffusion equations with almost Lipschitz coefficients, Revista Matemática Iberoamericana 21 (2005), 861-886 Zbl1098.35038MR2231013
- Desjardins (B.), Global existence results for the incompressible density-dependent Navier-Stokes equations in the whole space, Differential and Integral Equations 10 (1997), 587-598 Zbl0902.76027MR1744863
- Okamoto (H.), On the equation of nonstationary stratified fluid motion: uniqueness and existence of the solutions, Journal of the Faculty of Sciences of the University of Tokyo 30 (1984), 615-643 Zbl0596.76119MR731521
- Kato (T.), Ponce (G.), Commutator estimates and the Euler and Navier-Stokes equations, Communications on Pure and Applied Mathematics 41 (1988), 891-907 Zbl0671.35066MR951744
- Kozono (H.), Ogawa (T.), Taniuchi (Y.), The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Mathematische Zeitschrift 242 (2002), 251-278 Zbl1055.35087MR1980623
- Ladyzhenskaya (O.), Solonnikov (V.), The unique solvability of an initial-boundary value problem for viscous incompressible inhomogeneous fluids, Journal of Soviet Mathematics 9 (1978), 697-749 Zbl0401.76037
- Lions (P.-L.), Mathematical Topics in Fluid Dynamics, Incompressible Models, 1 (1996), Oxford University Press Zbl0866.76002MR1422251
- Runst (T.), Sickel (W.), Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, (1996), Walter de Gruyter & Co., Berlin Zbl0873.35001MR1419319
- Vishik (M), Hydrodynamics in Besov spaces, Archive for Rational Mechanics and Analysis 145 (1998), 197-214 Zbl0926.35123MR1664597
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.