The inviscid limit for density-dependent incompressible fluids

Raphaël Danchin[1]

  • [1] Centre de Mathématiques, Univ. Paris 12, 61 av. du Général de Gaulle, 94010 Créteil Cedex, France

Annales de la faculté des sciences de Toulouse Mathématiques (2006)

  • Volume: 15, Issue: 4, page 637-688
  • ISSN: 0240-2963

Abstract

top
This paper is devoted to the study of smooth flows of density-dependent fluids in N or in the torus 𝕋 N . We aim at extending several classical results for the standard Euler or Navier-Stokes equations, to this new framework.Existence and uniqueness is stated on a time interval independent of the viscosity μ when μ goes to 0 . A blow-up criterion involving the norm of vorticity in L 1 ( 0 , T ; L ) is also proved. Besides, we show that if the density-dependent Euler equations have a smooth solution on a given time interval [ 0 , T 0 ] , then the density-dependent Navier-Stokes equations with the same data and small viscosity have a smooth solution on [ 0 , T 0 ] . The viscous solution tends to the Euler solution when the viscosity μ goes to 0 . The rate of convergence in L 2 is of order μ .An appendix is devoted to the proof of elliptic estimates in Sobolev spaces with positive or negative regularity indices, interesting for their own sake.

How to cite

top

Danchin, Raphaël. "The inviscid limit for density-dependent incompressible fluids." Annales de la faculté des sciences de Toulouse Mathématiques 15.4 (2006): 637-688. <http://eudml.org/doc/10018>.

@article{Danchin2006,
abstract = {This paper is devoted to the study of smooth flows of density-dependent fluids in $\{\mathbb\{R\}\}^N$ or in the torus $\{\mathbb\{T\}\}^N$. We aim at extending several classical results for the standard Euler or Navier-Stokes equations, to this new framework.Existence and uniqueness is stated on a time interval independent of the viscosity $\mu $ when $\mu $ goes to $0$. A blow-up criterion involving the norm of vorticity in $L^1(0,T;L^\infty )$ is also proved. Besides, we show that if the density-dependent Euler equations have a smooth solution on a given time interval $[0,T_0]$, then the density-dependent Navier-Stokes equations with the same data and small viscosity have a smooth solution on $[0,T_0]$. The viscous solution tends to the Euler solution when the viscosity $\mu $ goes to $0$. The rate of convergence in $L^2$ is of order $\mu $.An appendix is devoted to the proof of elliptic estimates in Sobolev spaces with positive or negative regularity indices, interesting for their own sake.},
affiliation = {Centre de Mathématiques, Univ. Paris 12, 61 av. du Général de Gaulle, 94010 Créteil Cedex, France},
author = {Danchin, Raphaël},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {incompressible nonhomogeneous fluids},
language = {eng},
number = {4},
pages = {637-688},
publisher = {Université Paul Sabatier, Toulouse},
title = {The inviscid limit for density-dependent incompressible fluids},
url = {http://eudml.org/doc/10018},
volume = {15},
year = {2006},
}

TY - JOUR
AU - Danchin, Raphaël
TI - The inviscid limit for density-dependent incompressible fluids
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2006
PB - Université Paul Sabatier, Toulouse
VL - 15
IS - 4
SP - 637
EP - 688
AB - This paper is devoted to the study of smooth flows of density-dependent fluids in ${\mathbb{R}}^N$ or in the torus ${\mathbb{T}}^N$. We aim at extending several classical results for the standard Euler or Navier-Stokes equations, to this new framework.Existence and uniqueness is stated on a time interval independent of the viscosity $\mu $ when $\mu $ goes to $0$. A blow-up criterion involving the norm of vorticity in $L^1(0,T;L^\infty )$ is also proved. Besides, we show that if the density-dependent Euler equations have a smooth solution on a given time interval $[0,T_0]$, then the density-dependent Navier-Stokes equations with the same data and small viscosity have a smooth solution on $[0,T_0]$. The viscous solution tends to the Euler solution when the viscosity $\mu $ goes to $0$. The rate of convergence in $L^2$ is of order $\mu $.An appendix is devoted to the proof of elliptic estimates in Sobolev spaces with positive or negative regularity indices, interesting for their own sake.
LA - eng
KW - incompressible nonhomogeneous fluids
UR - http://eudml.org/doc/10018
ER -

References

top
  1. Antontsev (S.), Kazhikhov (A.), Monakhov (V.), Boundary value problems in mechanics of nonhomogeneous fluids, 22 (1990), North-Holland Publishing Co., Amsterdam Zbl0696.76001MR1035212
  2. Beale (J.), Kato (T.), Majda (A.), Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Communications in Mathematical Physics 94 (1984), 61-66 Zbl0573.76029MR763762
  3. Bony (J.-M.), Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, 14 (1981), 209-246 Zbl0495.35024MR631751
  4. Chemin (J.-Y.), Théorèmes d’unicité pour le système de Navier-Stokes tridimensionnel, Journal d’Analyse Mathématique 77 (1999), 25-50 Zbl0938.35125MR1753481
  5. Constantin (P.), Foias (C.), Navier-Stokes equations, (1988), University of Chicago Press Zbl0687.35071MR972259
  6. Danchin (R.), A few remarks on the Camassa-Holm equation, Differential and Integral Equations 14 (2001), 953-988 Zbl1161.35329MR1827098
  7. Danchin (R.), Density-dependent incompressible fluids in critical spaces, Proceedings of the Royal Society of Edinburgh 133A (2003), 1311-1334 Zbl1050.76013MR2027648
  8. Danchin (R.), Local and global well-posedness results for flows of inhomogeneous viscous fluids, Advances in Differential Equations 9 (2004), 353-386 Zbl1103.35085MR2100632
  9. Danchin (R.), Estimates in Besov spaces for transport and transport-diffusion equations with almost Lipschitz coefficients, Revista Matemática Iberoamericana 21 (2005), 861-886 Zbl1098.35038MR2231013
  10. Desjardins (B.), Global existence results for the incompressible density-dependent Navier-Stokes equations in the whole space, Differential and Integral Equations 10 (1997), 587-598 Zbl0902.76027MR1744863
  11. Okamoto (H.), On the equation of nonstationary stratified fluid motion: uniqueness and existence of the solutions, Journal of the Faculty of Sciences of the University of Tokyo 30 (1984), 615-643 Zbl0596.76119MR731521
  12. Kato (T.), Ponce (G.), Commutator estimates and the Euler and Navier-Stokes equations, Communications on Pure and Applied Mathematics 41 (1988), 891-907 Zbl0671.35066MR951744
  13. Kozono (H.), Ogawa (T.), Taniuchi (Y.), The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Mathematische Zeitschrift 242 (2002), 251-278 Zbl1055.35087MR1980623
  14. Ladyzhenskaya (O.), Solonnikov (V.), The unique solvability of an initial-boundary value problem for viscous incompressible inhomogeneous fluids, Journal of Soviet Mathematics 9 (1978), 697-749 Zbl0401.76037
  15. Lions (P.-L.), Mathematical Topics in Fluid Dynamics, Incompressible Models, 1 (1996), Oxford University Press Zbl0866.76002MR1422251
  16. Runst (T.), Sickel (W.), Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, (1996), Walter de Gruyter & Co., Berlin Zbl0873.35001MR1419319
  17. Vishik (M), Hydrodynamics in Besov spaces, Archive for Rational Mechanics and Analysis 145 (1998), 197-214 Zbl0926.35123MR1664597

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.