Well-posedness for density-dependent incompressible fluids with non-Lipschitz velocity
Boris Haspot[1]
- [1] Université Paris Dauphine Ceremade UMR CNRS 7534 Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16 (France) Karls Ruprecht Universität HeidelBerg Institut for Applied Mathematics Im Neuenheimer Feld 294 D-69120 Heildelberg (Germany)
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 5, page 1717-1763
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topHaspot, Boris. "Well-posedness for density-dependent incompressible fluids with non-Lipschitz velocity." Annales de l’institut Fourier 62.5 (2012): 1717-1763. <http://eudml.org/doc/251028>.
@article{Haspot2012,
abstract = {This paper is dedicated to the study of the initial value problem for density dependent incompressible viscous fluids in $\mathbb\{R\}^\{N\}$ with $N\ge 2$. We address the question of well-posedness for large and small initial data having critical Besov regularity in functional spaces as close as possible to the ones imposed in the incompressible Navier Stokes system by Cannone, Meyer and Planchon (where $u_\{0\}\in B^\{\{\frac\{N\}\{p\}\}-1\}_\{p,r\}$ with $1\le p<+\infty ,1\le r\le +\infty $). This improves the classical analysis where $u_\{0\}$ is considered belonging in $B^\{\{\frac\{N\}\{p\}\}-1\}_\{p,1\}$ such that the velocity $u$ remains Lipschitz. Our result relies on a new a priori estimate for transport equation introduce by Bahouri, Chemin and Danchin when the velocity $u$ is not necessary Lipschitz but only log Lipschitz. Furthermore it gives a first kind of answer to the problem of self-similar solution.},
affiliation = {Université Paris Dauphine Ceremade UMR CNRS 7534 Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16 (France) Karls Ruprecht Universität HeidelBerg Institut for Applied Mathematics Im Neuenheimer Feld 294 D-69120 Heildelberg (Germany)},
author = {Haspot, Boris},
journal = {Annales de l’institut Fourier},
keywords = {Navier-Stokes equations Cauchy problem; Littlewood-Paley theory; losing estimates for the transport equation},
language = {eng},
number = {5},
pages = {1717-1763},
publisher = {Association des Annales de l’institut Fourier},
title = {Well-posedness for density-dependent incompressible fluids with non-Lipschitz velocity},
url = {http://eudml.org/doc/251028},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Haspot, Boris
TI - Well-posedness for density-dependent incompressible fluids with non-Lipschitz velocity
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 5
SP - 1717
EP - 1763
AB - This paper is dedicated to the study of the initial value problem for density dependent incompressible viscous fluids in $\mathbb{R}^{N}$ with $N\ge 2$. We address the question of well-posedness for large and small initial data having critical Besov regularity in functional spaces as close as possible to the ones imposed in the incompressible Navier Stokes system by Cannone, Meyer and Planchon (where $u_{0}\in B^{{\frac{N}{p}}-1}_{p,r}$ with $1\le p<+\infty ,1\le r\le +\infty $). This improves the classical analysis where $u_{0}$ is considered belonging in $B^{{\frac{N}{p}}-1}_{p,1}$ such that the velocity $u$ remains Lipschitz. Our result relies on a new a priori estimate for transport equation introduce by Bahouri, Chemin and Danchin when the velocity $u$ is not necessary Lipschitz but only log Lipschitz. Furthermore it gives a first kind of answer to the problem of self-similar solution.
LA - eng
KW - Navier-Stokes equations Cauchy problem; Littlewood-Paley theory; losing estimates for the transport equation
UR - http://eudml.org/doc/251028
ER -
References
top- Hammadi Abidi, Équation de Navier-Stokes avec densité et viscosité variables dans l’espace critique, (2000)
- Hammadi Abidi, M. Paicu, Équation de Navier-Stokes avec densité et viscosité variables dans l’espace critique, Annales de l’Institut Fourier 57 (2007), 883-917 Zbl1122.35091MR2336833
- S. N. Antontsev, A. V. Kazhikhov, V. N. Monakhov, Boundary value problems in mechanics of nonhomogeneous fluids, 22 (1990), North-Holland Publishing Co., Amsterdam Zbl0696.76001MR1035212
- Hajer Bahouri, Jean-Yves Chemin, Raphaël Danchin, Fourier analysis and nonlinear partial differential equations, 343 (2011), Springer, Heidelberg Zbl1227.35004MR2768550
- Jean-Michel Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup. (4) 14 (1981), 209-246 Zbl0495.35024MR631751
- M. Cannone, Y. Meyer, F. Planchon, Solutions auto-similaires des équations de Navier-Stokes, Séminaire sur les Équations aux Dérivées Partielles, 1993–1994 (1994), École Polytech., Palaiseau Zbl0882.35090MR1300903
- Jean-Yves Chemin, Isabelle Gallagher, Marius Paicu, Global regularity for some classes of large solutions to the Navier-Stokes equations, Ann. of Math. (2) 173 (2011), 983-1012 Zbl1229.35168MR2776367
- Raphaël Danchin, Erratum: “Local theory in critical spaces for compressible viscous and heat-conductive gases” [Comm. Partial Differential Equations 26 (2001), no. 7-8, 1183–1233; MR1855277 (2002g:76091)], Comm. Partial Differential Equations 27 (2002), 2531-2532 Zbl1007.35071MR1855277
- Raphaël Danchin, Density-dependent incompressible viscous fluids in critical spaces, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), 1311-1334 Zbl1050.76013MR2027648
- Raphaël Danchin, Local and global well-posedness results for flows of inhomogeneous viscous fluids, Adv. Differential Equations 9 (2004), 353-386 Zbl1103.35085MR2100632
- Raphaël Danchin, Fourier analysis method for PDE’s, (2005) Zbl1098.35038
- Raphaël Danchin, On the uniqueness in critical spaces for compressible Navier-Stokes equations, NoDEA Nonlinear Differential Equations Appl. 12 (2005), 111-128 Zbl1125.76061MR2138937
- Raphaël Danchin, The inviscid limit for density-dependent incompressible fluids, Ann. Fac. Sci. Toulouse Math. (6) 15 (2006), 637-688 Zbl1221.35295MR2295208
- Raphaël Danchin, Well-posedness in critical spaces for barotropic viscous fluids with truly not constant density, Comm. Partial Differential Equations 32 (2007), 1373-1397 Zbl1120.76052MR2354497
- Raphaël Danchin, Marius Paicu, Les théorèmes de Leray et de Fujita-Kato pour le système de Boussinesq partiellement visqueux, Bull. Soc. Math. France 136 (2008), 261-309 Zbl1162.35063MR2415344
- Benoît Desjardins, Regularity results for two-dimensional flows of multiphase viscous fluids, Arch. Rational Mech. Anal. 137 (1997), 135-158 Zbl0880.76090MR1463792
- Hiroshi Fujita, Tosio Kato, On the Navier-Stokes initial value problem. I, Arch. Rational Mech. Anal. 16 (1964), 269-315 Zbl0126.42301MR166499
- Pierre Germain, Weak-strong uniqueness for the isentropic compressible Navier-Stokes system, J. Math. Fluid Mech. 13 (2011), 137-146 Zbl1270.35342MR2784900
- B. Haspot, Existence of global strong solutions in critical spaces for barotropic viscous fluids, Archive for Rational Mechanics and Analysis 202 (2011), 427-460 Zbl06101956MR2847531
- B. Haspot, Existence of strong solutions in critical spaces for barotropic viscous fluids in larger spaces, Journal of Differential Equations 251 (2011), 2262-2295 Zbl1229.35182MR2886541
- S. Itoh, A. Tani, Solvability of nonstationnary problems for nonhomogeneous incompressible fluids and the convergence with vanishing viscosity, Tokyo Journal of Mathematics 22 (1999), 17-42 Zbl0943.35075MR1692018
- Herbert Koch, Daniel Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math. 157 (2001), 22-35 Zbl0972.35084MR1808843
- O. A. Ladyženskaja, V. A. Solonnikov, The unique solvability of an initial-boundary value problem for viscous incompressible inhomogeneous fluids, J. Soviet Math. 9 (1978), 697-749 Zbl0401.76037
- P. G. Lemarié-Rieusset, Recent developments in the Navier-Stokes problem, 431 (2002), Chapman & Hall/CRC, Boca Raton, FL Zbl1034.35093MR1938147
- Pierre-Louis Lions, Mathematical topics in fluid mechanics. Vol. 1, 3 (1996), The Clarendon Press Oxford University Press, New York Zbl0866.76002MR1422251
- Yves Meyer, Wavelets, paraproducts, and Navier-Stokes equations, Current developments in mathematics, 1996 (Cambridge, MA) (1997), 105-212, Int. Press, Boston, MA Zbl0926.35115MR1724946
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.