Rosen fractions and Veech groups, an overly brief introduction
- [1] Oregon State University Corvallis, OR 97331
Actes des rencontres du CIRM (2009)
- Volume: 1, Issue: 1, page 61-67
- ISSN: 2105-0597
Access Full Article
topAbstract
topHow to cite
topReferences
top- P. Arnoux, P. Hubert, Fractions continues sur les surfaces de Veech, J. Anal. Math. 81 (2000), 35–64. Zbl1029.11035MR1785277
- E. Artin, Ein mechanisches System mit quasi-ergodischen Bahnen, Abh. Math. Sem. Hamburg 3 (1924) 170-175 (and Collected Papers, Springer-Verlag, New York, 1982, 499-505). Zbl50.0677.11
- F. Berg, Dreiecksgruppen mit Spitzen in quadratischen Zahlkörpern, Abh. Math. Sem. Univ. Hamburg 55 (1985), 191–200. Zbl0581.10010MR831527
- E. Bogomolny and C. Schmit, Multiplicities of periodic orbit lengths for non-arithmetic models, J. Phys. A: Math. Gen. 37, (2004) 4501-4526. Zbl1050.37008MR2065941
- R. Bowen, C. Series, Markov maps associated with Fuchsian groups, Inst. Hautes Études Sci. Publ. Math. No. 50 (1979), 153–170. Zbl0439.30033MR556585
- D. Bump, Automorphic forms and representations, Cambridge Studies in Advanced Mathematics, 55. Cambridge University Press, Cambridge, 1997. Zbl0868.11022MR1431508
- R. Burton, C. Kraaikamp, and T.A. Schmidt, Natural extensions for the Rosen fractions, TAMS 352 (1999), 1277–1298. Zbl0938.11036MR1650073
- K. Calta, Veech surfaces and complete periodicity in genus two, J. Amer. Math. Soc. 17 (2004), no. 4, 871–908 Zbl1073.37032MR2083470
- K. Dajani, C. Kraaikamp, W. Steiner, Metrical theory for -Rosen fractions, preprint. ArXiv : 0702516. Zbl1184.28016
- E. Gutkin, Billiards in polygons: Survey of recent results, J. Stat. Phys. 83 (1996), 7 – 26. Zbl1081.37525MR1382759
- E. Gutkin and C. Judge, Affine mappings of translation surfaces: Geometry and arithmetic, Duke Math. J. 103 (2000), 191 – 213. Zbl0965.30019MR1760625
- E. Hanson, A. Merberg, C. Towse, and E. Yudovina, Generalized continued fractions and orbits under the action of Hecke triangle groups Acta Arith. 134 (2008), no. 4, 337–348. Zbl1219.11105MR2449157
- P. Hubert, T. A. Schmidt, An introduction to Veech surfaces; in: Handbook of dynamical systems. Vol. 1B, 501–526, Elsevier B. V., Amsterdam, 2006. Zbl1130.37367MR2186246
- I. Ivrissimtzis, D. Singerman, Regular maps and principal congruence subgroups of Hecke groups, European J. Combin. 26 (2005), no. 3-4, 437–456. Zbl1075.20022MR2116181
- S. Kerckhoff, H. Masur, and J. Smillie, Ergodicity of billiard flows and quadratic differentials, Ann. Math. 124 (1986), 293 – 311. Zbl0637.58010MR855297
- M.-L. Lang, C.-H. Lim, S.-P. Tan, Principal congruence subgroups of the Hecke groups, J. Number Theory 85 (2) (2000) 220–230. Zbl0964.11023MR1802713
- A. Leutbecher Über die Heckeschen Gruppen , Abh. Math. Sem. Hamb. 31 (1967), 199-205. Zbl0161.27601MR228438
- H. Masur and S. Tabachnikov, Rational billiards and flat structures, in Handbook on Dynamical Systems, Elsevier 2001, in press. Zbl1057.37034MR1928530
- D. Mayer and F. Strömberg,Symbolic dynamics for the geodesic flow on Hecke surfaces, J. Mod. Dyn. 2 (2008), no. 4, 581–627. Zbl1161.37031MR2449139
- C. McMullen, Teichmüller geodesics of infinite complexity, Acta Math. 191 (2003), no. 2, 191–223 Zbl1131.37052MR2051398
- H. Nakada, Continued fractions, geodesic flows and Ford circles, in Algorithms, Fractals and Dynamics edited by Y. Takahashi, 179–191, Plenum, 1995. Zbl0868.30005MR1402490
- D. Rosen, A Class of Continued Fractions Associated with Certain Properly Discontinuous Groups, Duke Math. J. 21 (1954), 549-563. Zbl0056.30703MR65632
- T. A. Schmidt, M. Sheingorn, Length spectra of the Hecke triangle groups, Math. Z. 220 (1995), no. 3, 369–397 Zbl0840.11019MR1362251
- J. Smillie, Dynamics of billiard flow in rational polygons; In: Ya. G. Sinai (ed) Dynamical Systems. Encycl. Math. Sci. Vol. 100. Math. Physics 1. Springer Verlag, 360 – 382 (2000) Zbl1323.37002
- J. Smillie and C. Ulcigrai Symbolic coding for linear trajectories in the regular octagon, preprint arXiv:0905.0871.
- W. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. A.M.S. 19 (1988), 417 – 431. Zbl0674.57008MR956596
- D. Rosen, C. Towse, Continued fraction representations of units associated with certain Hecke groups, Arch. Math. (Basel) 77 (2001), no. 4, 294–302. Zbl0992.11034MR1853543
- M. Viana, Ergodic theory of interval exchange maps Rev. Mat. Complut. 19 (2006), no. 1, 7–100. Zbl1112.37003MR2219821
- W.A. Veech, Teichmuller curves in modular space, Eisenstein series, and an application to triangular billiards, Inv. Math. 97 (1989), 553 – 583. Zbl0676.32006MR1005006
- Ya. B. Vorobets , Plane structures and billiards in rational polyhedra: the Veech alternative (Russian), Uspekhi Mat. Nauk 51, 3–42, (1996); translation in Russian Math. Surveys 51:5 (1996), 779–817 Zbl0897.58029MR1436653
- L. Washington, Introduction to cyclotomic fields, GTM 83. Springer-Verlag, New York, 1997. Zbl0966.11047MR1421575
- A. Zorich, Flat surfaces; in: Frontiers in number theory, physics, and geometry. I, 437–583, Springer, Berlin, 2006. Zbl1129.32012MR2261104