Page 1 Next

Displaying 1 – 20 of 21

Showing per page

A holomorphic correspondence at the boundary of the Klein combination locus

Shaun Bullett, Andrew Curtis (2012)

Annales de la faculté des sciences de Toulouse Mathématiques

We investigate an explicit holomorphic correspondence on the Riemann sphere with striking dynamical behaviour: the limit set is a fractal resembling the one-skeleton of a tetrahedron and on each component of the complement of this set the correspondence behaves like a Fuchsian group.

Bounded geometry of quadrilaterals and variation of multipliers for rational maps

Kevin M. Pilgrim (2004)

Fundamenta Mathematicae

Let Q be the unit square in the plane and h: Q → h(Q) a quasiconformal map. When h is conformal off a certain self-similar set, the modulus of h(Q) is bounded independent of h. We apply this observation to give explicit estimates for the variation of multipliers of repelling fixed points under a "spinning" quasiconformal deformation of a particular cubic polynomial.

Conformal measures and matings between Kleinian groups and quadratic polynomials

Marianne Freiberger (2007)

Fundamenta Mathematicae

Following results of McMullen concerning rational maps, we show that the limit set of matings between a certain class of representations of C₂ ∗ C₃ and quadratic polynomials carries δ-conformal measures, and that if the correspondence is geometrically finite then the real number δ is equal to the Hausdorff dimension of the limit set. Moreover, when f is the limit of a pinching deformation f t 0 t < 1 we give sufficient conditions for the dynamical convergence of f t .

Convergence of pinching deformations and matings of geometrically finite polynomials

Peter Haïssinsky, Lei Tan (2004)

Fundamenta Mathematicae

We give a thorough study of Cui's control of distortion technique in the analysis of convergence of simple pinching deformations, and extend his result from geometrically finite rational maps to some subset of geometrically infinite maps. We then combine this with mating techniques for pairs of polynomials to establish existence and continuity results for matings of polynomials with parabolic points. Consequently, if two hyperbolic quadratic polynomials tend to their respective root polynomials...

Déviations de moyennes ergodiques, flots de Teichmüller et cocycle de Kontsevich-Zorich

Raphaël Krikorian (2003/2004)

Séminaire Bourbaki

Étant donnée une fonction régulière de moyenne nulle sur le tore de dimension 2 , il est facile de voir que ses intégrales ergodiques au-dessus d’un flot de translation “générique”sont bornées. Il y a une dizaine d’années, A. Zorich a observé numériquement une croissance en puissance du temps de ces intégrales ergodiques au-dessus de flots d’hamiltoniens (non-exacts) “génériques”sur des surfaces de genre supérieur ou égal à 2 , et Kontsevich et Zorich ont proposé une explication (conjecturelle) de...

Ergodic theory of interval exchange maps.

Marcelo Viana (2006)

Revista Matemática Complutense

A unified introduction to the dynamics of interval exchange maps and related topics, such as the geometry of translation surfaces, renormalization operators, and Teichmüller flows, starting from the basic definitions and culminating with the proof that almost every interval exchange map is uniquely ergodic. Great emphasis is put on examples and geometric interpretations of the main ideas.

Farey curves.

Buff, Xavier, Henriksen, Christian, Hubbard, John H. (2001)

Experimental Mathematics

Generalized Staircases: Recurrence and Symmetry

W. Patrick Hooper, Barak Weiss (2012)

Annales de l’institut Fourier

We study infinite translation surfaces which are -covers of compact translation surfaces. We obtain conditions ensuring that such surfaces have Veech groups which are Fuchsian of the first kind and give a necessary and sufficient condition for recurrence of their straight-line flows. Extending results of Hubert and Schmithüsen, we provide examples of infinite non-arithmetic lattice surfaces, as well as surfaces with infinitely generated Veech groups.

Labeled Rauzy classes and framed translation surfaces

Corentin Boissy (2013)

Annales de l’institut Fourier

In this paper, we compare two definitions of Rauzy classes. The first one was introduced by Rauzy and was in particular used by Veech to prove the ergodicity of the Teichmüller flow. The second one is more recent and uses a “labeling” of the underlying intervals, and was used in the proof of some recent major results about the Teichmüller flow.The Rauzy diagrams obtained from the second definition are coverings of the initial ones. In this paper, we give a formula that gives the degree of this covering.This...

Matings and the other side of the dictionary

John Hubbard (2012)

Annales de la faculté des sciences de Toulouse Mathématiques

In the theory of rational maps an important role is played by matings. These are probably the best understood of all rational functions, but they are bizarre, and involve gluing dendrites together to get spheres carrying Peano curves. In the theory of Kleinian groups, there is a parallel construction, the construction of double limits, that is central to Thurston’s hyperbolization theorem for 3-manifolds that fiber over the circle with pseudo-Anosov monodromy. It also involves gluing dendrites and...

Rosen fractions and Veech groups, an overly brief introduction

Thomas A. Schmidt (2009)

Actes des rencontres du CIRM

We give a very brief, but gentle, sketch of an introduction both to the Rosen continued fractions and to a geometric setting to which they are related, given in terms of Veech groups. We have kept the informal approach of the talk at the Numerations conference, aimed at an audience assumed to have heard of neither of the topics of the title.The Rosen continued fractions are a family of continued fraction algorithms, each gives expansions of real numbers in terms of elements of a corresponding algebraic...

Currently displaying 1 – 20 of 21

Page 1 Next