Long memory and self-similar processes
- [1] School of Operations Research and Industrial Engineering, and Department of Statistical Science, Cornell University, Ithaca, NY 14853.
Annales de la faculté des sciences de Toulouse Mathématiques (2006)
- Volume: 15, Issue: 1, page 107-123
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topSamorodnitsky, Gennady. "Long memory and self-similar processes." Annales de la faculté des sciences de Toulouse Mathématiques 15.1 (2006): 107-123. <http://eudml.org/doc/10027>.
@article{Samorodnitsky2006,
abstract = {This paper is a survey of both classical and new results and ideas on long memory, scaling and self-similarity, both in the light-tailed and heavy-tailed cases.},
affiliation = {School of Operations Research and Industrial Engineering, and Department of Statistical Science, Cornell University, Ithaca, NY 14853.},
author = {Samorodnitsky, Gennady},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
number = {1},
pages = {107-123},
publisher = {Université Paul Sabatier, Toulouse},
title = {Long memory and self-similar processes},
url = {http://eudml.org/doc/10027},
volume = {15},
year = {2006},
}
TY - JOUR
AU - Samorodnitsky, Gennady
TI - Long memory and self-similar processes
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2006
PB - Université Paul Sabatier, Toulouse
VL - 15
IS - 1
SP - 107
EP - 123
AB - This paper is a survey of both classical and new results and ideas on long memory, scaling and self-similarity, both in the light-tailed and heavy-tailed cases.
LA - eng
UR - http://eudml.org/doc/10027
ER -
References
top- A. Astrauskas, J. Levy, M. S. Taqqu, The asymptotic dependence structure of the linear fractional Lévy motion, Lietuvos Matematikos Rinkinys (Lithuanian Mathematical Journal) 31 (1991), 1-28 Zbl0786.60052MR1161347
- J. Beran, Statistics for Long-Memory Processes, (1994), Chapman and Hall, New York Zbl0869.60045MR1304490
- S. Cohen, G. Samorodnitsky, Random rewards, Fractional Brownian local times and stable self-similar processes, (2005) Zbl1133.60016
- P. Embrechts, M. Maejima, Selfsimilar Processes, (2002), Princeton University Press, Princeton and Oxford Zbl1008.60003MR1920153
- H. Hurst, Long-term storage capacity of reservoirs, Transactions of the American Society of Civil Engineers 116 (1951), 770-808
- U. Krengel, Ergodic Theorems, 6 (1985), Walter de Gruyter & Co., Berlin, New York Zbl0575.28009MR797411
- B. Mandelbrot, Une classe de processus stochastiques homothétiques à soi; application à loi climatologique de H.E. Hurst, Comptes Rendus Acad. Sci. Paris 240 (1965), 3274-3277 Zbl0127.09501MR176521
- B. Mandelbrot, The Fractal Geometry of Nature, (1983), W.H. Freeman and Co., San Francisco Zbl0504.28001MR665254
- B. Mandelbrot, J. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Review 10 (1968), 422-437 Zbl0179.47801MR242239
- B. Mandelbrot, J. Wallis, Noah, Joseph and operational hydrology, Water Resources Research 4 (1968), 909-918
- B. Mandelbrot, J. Wallis, Robustness of the rescaled range R/S in the measurement of noncyclic long-run statistical dependence, Water Resour. Res. 5 (1969), 967-988
- T. Mikosch, G. Samorodnitsky, Ruin probability with claims modeled by a stationary ergodic stable process, Annals of Probability 28 (2000), 1814-1851 Zbl1044.60028MR1813844
- J. Nolan, Path properties of index- stable fields, Annals of Probability 16 (1988), 1596-1607 Zbl0673.60043MR958205
- V. Pipiras, M. S. Taqqu, Decomposition of self-similar stable mixing moving averages, Probability Theory and Related Fields 123 (2002), 412-452 Zbl1007.60026MR1918540
- V. Pipiras, M. S. Taqqu, The structure of self-similar stable mixing moving averages, Annals of Probability 30 (2002), 898-932 Zbl1016.60057MR1905860
- S. Resnick, Extreme values, regular variation and point processes, (1987), Springer-Verlag, New York Zbl0633.60001MR900810
- S. Resnick, G. Samorodnitsky, F. Xue, How misleading can sample ACF’s of stable MA’s be? (Very!), Annals of Applied Probability 9 (1999), 797-817 Zbl0959.62076MR1722283
- S. Resnick, G. Samorodnitsky, F. Xue, Growth rates of sample covariances of stationary symmetric -stable processes associated with null recurrent Markov chains, Stochastic Processes and Their Applications 85 (2000), 321-339 Zbl0995.62083MR1731029
- J. Rosiński, On the structure of stationary stable processes, The Annals of Probability 23 (1995), 1163-1187 Zbl0836.60038MR1349166
- J. Rosiński, T. Zak, Simple conditions for mixing of infinitely divisible processes, Stochastic Processes and Their Applications 61 (1996), 277-288 Zbl0870.60032MR1440274
- J. Rosiński, G. Samorodnitsky, Classes of mixing stable processes, Bernoulli 2 (1996), 3655-378 Zbl0849.60031MR1386177
- G. Samorodnitsky, Long range dependence, heavy tails and rare events, MaPhySto (2002), Centre for Mathematical Physics and Stochastics, Aarhus
- G. Samorodnitsky, Extreme value theory, ergodic theory, and the boundary between short memory and long memory for stationary stable processes, Annals of Probability 32 (2004), 1438-1468 Zbl1049.60027MR2060304
- G. Samorodnitsky, Null flows, positive flows and the structure of stationary symmetric stable processes, Annals of Probability 33 (2005), 1782-1803 Zbl1080.60033MR2165579
- G. Samorodnitsky, M. Taqqu, -self-similar processes with stationary increments, Journal of Multivariate Analysis 35 (1990), 308-313 Zbl0721.60047MR1079674
- G. Samorodnitsky, M. Taqqu, Stable Non-Gaussian Random Processes, (1994), Chapman and Hall, New York Zbl0925.60027MR1280932
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.