Long memory and self-similar processes

Gennady Samorodnitsky[1]

  • [1] School of Operations Research and Industrial Engineering, and Department of Statistical Science, Cornell University, Ithaca, NY 14853.

Annales de la faculté des sciences de Toulouse Mathématiques (2006)

  • Volume: 15, Issue: 1, page 107-123
  • ISSN: 0240-2963

Abstract

top
This paper is a survey of both classical and new results and ideas on long memory, scaling and self-similarity, both in the light-tailed and heavy-tailed cases.

How to cite

top

Samorodnitsky, Gennady. "Long memory and self-similar processes." Annales de la faculté des sciences de Toulouse Mathématiques 15.1 (2006): 107-123. <http://eudml.org/doc/10027>.

@article{Samorodnitsky2006,
abstract = {This paper is a survey of both classical and new results and ideas on long memory, scaling and self-similarity, both in the light-tailed and heavy-tailed cases.},
affiliation = {School of Operations Research and Industrial Engineering, and Department of Statistical Science, Cornell University, Ithaca, NY 14853.},
author = {Samorodnitsky, Gennady},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
number = {1},
pages = {107-123},
publisher = {Université Paul Sabatier, Toulouse},
title = {Long memory and self-similar processes},
url = {http://eudml.org/doc/10027},
volume = {15},
year = {2006},
}

TY - JOUR
AU - Samorodnitsky, Gennady
TI - Long memory and self-similar processes
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2006
PB - Université Paul Sabatier, Toulouse
VL - 15
IS - 1
SP - 107
EP - 123
AB - This paper is a survey of both classical and new results and ideas on long memory, scaling and self-similarity, both in the light-tailed and heavy-tailed cases.
LA - eng
UR - http://eudml.org/doc/10027
ER -

References

top
  1. A. Astrauskas, J. Levy, M. S. Taqqu, The asymptotic dependence structure of the linear fractional Lévy motion, Lietuvos Matematikos Rinkinys (Lithuanian Mathematical Journal) 31 (1991), 1-28 Zbl0786.60052MR1161347
  2. J. Beran, Statistics for Long-Memory Processes, (1994), Chapman and Hall, New York Zbl0869.60045MR1304490
  3. S. Cohen, G. Samorodnitsky, Random rewards, Fractional Brownian local times and stable self-similar processes, (2005) Zbl1133.60016
  4. P. Embrechts, M. Maejima, Selfsimilar Processes, (2002), Princeton University Press, Princeton and Oxford Zbl1008.60003MR1920153
  5. H. Hurst, Long-term storage capacity of reservoirs, Transactions of the American Society of Civil Engineers 116 (1951), 770-808 
  6. U. Krengel, Ergodic Theorems, 6 (1985), Walter de Gruyter & Co., Berlin, New York Zbl0575.28009MR797411
  7. B. Mandelbrot, Une classe de processus stochastiques homothétiques à soi; application à loi climatologique de H.E. Hurst, Comptes Rendus Acad. Sci. Paris 240 (1965), 3274-3277 Zbl0127.09501MR176521
  8. B. Mandelbrot, The Fractal Geometry of Nature, (1983), W.H. Freeman and Co., San Francisco Zbl0504.28001MR665254
  9. B. Mandelbrot, J. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Review 10 (1968), 422-437 Zbl0179.47801MR242239
  10. B. Mandelbrot, J. Wallis, Noah, Joseph and operational hydrology, Water Resources Research 4 (1968), 909-918 
  11. B. Mandelbrot, J. Wallis, Robustness of the rescaled range R/S in the measurement of noncyclic long-run statistical dependence, Water Resour. Res. 5 (1969), 967-988 
  12. T. Mikosch, G. Samorodnitsky, Ruin probability with claims modeled by a stationary ergodic stable process, Annals of Probability 28 (2000), 1814-1851 Zbl1044.60028MR1813844
  13. J. Nolan, Path properties of index- β stable fields, Annals of Probability 16 (1988), 1596-1607 Zbl0673.60043MR958205
  14. V. Pipiras, M. S. Taqqu, Decomposition of self-similar stable mixing moving averages, Probability Theory and Related Fields 123 (2002), 412-452 Zbl1007.60026MR1918540
  15. V. Pipiras, M. S. Taqqu, The structure of self-similar stable mixing moving averages, Annals of Probability 30 (2002), 898-932 Zbl1016.60057MR1905860
  16. S. Resnick, Extreme values, regular variation and point processes, (1987), Springer-Verlag, New York Zbl0633.60001MR900810
  17. S. Resnick, G. Samorodnitsky, F. Xue, How misleading can sample ACF’s of stable MA’s be? (Very!), Annals of Applied Probability 9 (1999), 797-817 Zbl0959.62076MR1722283
  18. S. Resnick, G. Samorodnitsky, F. Xue, Growth rates of sample covariances of stationary symmetric α -stable processes associated with null recurrent Markov chains, Stochastic Processes and Their Applications 85 (2000), 321-339 Zbl0995.62083MR1731029
  19. J. Rosiński, On the structure of stationary stable processes, The Annals of Probability 23 (1995), 1163-1187 Zbl0836.60038MR1349166
  20. J. Rosiński, T. Zak, Simple conditions for mixing of infinitely divisible processes, Stochastic Processes and Their Applications 61 (1996), 277-288 Zbl0870.60032MR1440274
  21. J. Rosiński, G. Samorodnitsky, Classes of mixing stable processes, Bernoulli 2 (1996), 3655-378 Zbl0849.60031MR1386177
  22. G. Samorodnitsky, Long range dependence, heavy tails and rare events, MaPhySto (2002), Centre for Mathematical Physics and Stochastics, Aarhus 
  23. G. Samorodnitsky, Extreme value theory, ergodic theory, and the boundary between short memory and long memory for stationary stable processes, Annals of Probability 32 (2004), 1438-1468 Zbl1049.60027MR2060304
  24. G. Samorodnitsky, Null flows, positive flows and the structure of stationary symmetric stable processes, Annals of Probability 33 (2005), 1782-1803 Zbl1080.60033MR2165579
  25. G. Samorodnitsky, M. Taqqu, ( 1 / α ) -self-similar processes with stationary increments, Journal of Multivariate Analysis 35 (1990), 308-313 Zbl0721.60047MR1079674
  26. G. Samorodnitsky, M. Taqqu, Stable Non-Gaussian Random Processes, (1994), Chapman and Hall, New York Zbl0925.60027MR1280932

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.