Embedded eigenvalues and resonances of Schrödinger operators with two channels

Xue Ping Wang[1]

  • [1] Département de Mathématiques, UMR 6629 CNRS, Université de Nantes, 44322 Nantes Cedex France

Annales de la faculté des sciences de Toulouse Mathématiques (2007)

  • Volume: 16, Issue: 1, page 179-214
  • ISSN: 0240-2963

Abstract

top
In this article, we give a necessary and sufficient condition in the perturbation regime on the existence of eigenvalues embedded between two thresholds. For an eigenvalue of the unperturbed operator embedded at a threshold, we prove that it can produce both discrete eigenvalues and resonances. The locations of the eigenvalues and resonances are given.

How to cite

top

Wang, Xue Ping. "Embedded eigenvalues and resonances of Schrödinger operators with two channels." Annales de la faculté des sciences de Toulouse Mathématiques 16.1 (2007): 179-214. <http://eudml.org/doc/10030>.

@article{Wang2007,
abstract = {In this article, we give a necessary and sufficient condition in the perturbation regime on the existence of eigenvalues embedded between two thresholds. For an eigenvalue of the unperturbed operator embedded at a threshold, we prove that it can produce both discrete eigenvalues and resonances. The locations of the eigenvalues and resonances are given.},
affiliation = {Département de Mathématiques, UMR 6629 CNRS, Université de Nantes, 44322 Nantes Cedex France},
author = {Wang, Xue Ping},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
number = {1},
pages = {179-214},
publisher = {Université Paul Sabatier, Toulouse},
title = {Embedded eigenvalues and resonances of Schrödinger operators with two channels},
url = {http://eudml.org/doc/10030},
volume = {16},
year = {2007},
}

TY - JOUR
AU - Wang, Xue Ping
TI - Embedded eigenvalues and resonances of Schrödinger operators with two channels
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2007
PB - Université Paul Sabatier, Toulouse
VL - 16
IS - 1
SP - 179
EP - 214
AB - In this article, we give a necessary and sufficient condition in the perturbation regime on the existence of eigenvalues embedded between two thresholds. For an eigenvalue of the unperturbed operator embedded at a threshold, we prove that it can produce both discrete eigenvalues and resonances. The locations of the eigenvalues and resonances are given.
LA - eng
UR - http://eudml.org/doc/10030
ER -

References

top
  1. Agmon (S.).— Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), no. 2, p. 151-218 (1975). Zbl0315.47007MR397194
  2. Agmon (S.).— On perturbation of embedded eigenvalues. p. 1-14, in Progr. Nonlinear Differential Equations Appl., 21, Birkhäuser Boston, Boston, MA (1996). Zbl0865.35093MR1380980
  3. Agmon (S.), Herbst (I.), Skibsted (E.).— Perturbation of embedded eigenvalues in the generalized N -body problem. Comm. Math. Phys. 122, no. 3, p. 411-438 (1989). Zbl0668.35078MR998660
  4. Aguilar (J.), Combes (J.M.).— A class of analytic perturbations for one-body Schrödinger Hamiltonians, Commun. in Math. Phys., 22, p. 269-279 (1971). Zbl0219.47011MR345551
  5. Arai (A.).— Perturbation of embedded eigenvalues: a general class of exactly soluble models in Fock spaces. Hokkaido Math. J. 19, no. 1, p. 1-34 (1990). Zbl0713.47010MR1039462
  6. Derezinski (J.), Jaksic (V.).— Spectral theory of Pauli-Fierz operators, J. Funct. Analysis, 180, p. 243-327 (2001). Zbl1034.81016MR1814991
  7. Froese (R.), Herbst (I.).— Exponential bounds and absence of positive eigenvalues for N -body Schrödinger operators. Comm. Math. Phys. 87, no. 3, p. 429-447 (1982/83). Zbl0509.35061MR682117
  8. Helffer (B.), Sjöstrand (J.).— Résonances en limite semi-classique, Bull. Soc Math. France, Mémoire No.24/25, p. 114 (1986). Zbl0631.35075MR871788
  9. Hörmander (L.).— The Analysis of Linear Partial Differential Operators II, Springer (1983). Zbl0521.35002MR705278
  10. Howland (J.S.).— Puiseux series for resonances at an embedded eigenvalue. Pacific J. Math. 55, p. 157-176 (1974). Zbl0312.47010MR417823
  11. Howland (J.S.).— The Livsic matrix in perturbation theory. J. Math. Anal. Appl. 50, p. 415-437 (1975). Zbl0367.47010MR374957
  12. Isozaki (H.), Kitada (H.).— Microlocal resolvent estimates for 2 -body Schrödinger operators. J. Funct. Anal. 57, no. 3, p. 270-300 (1984). Zbl0568.35022MR756171
  13. Jensen (A.), Kato (T.).— Spectral properties of Schrödinger operators and time decay of wave functions, Duke Math. J., 46, p. 583-611 (1979). Zbl0448.35080MR544248
  14. Jensen (A.), Melgård (M.).— Perturbation of eigenvalues embedded at a threshold. Proc. Roy. Soc. Edinburgh Sect. A 132, no. 1, p. 163–179 (2002). Zbl1094.81024MR1884476
  15. Landau (L.), Lifchitz (E.).— Mécanique Quantique, Théorie Non Relativiste, Deuxième édition, Editions Mir, Moscou (1967). Zbl0148.43806
  16. Reed (M.), Simon (B.).— Methods of Modern Mathematical Physics IV. Analysis of Operators. Academic Press (1978). Zbl0401.47001MR493421
  17. Simon (B.).— Resonances in n -body quantum systems with dilatation analytic potentials and the foundations of time-dependent perturbation theory, Ann. of Math., p. 247-274 (1973). Zbl0252.47009MR353896
  18. Sjöstrand (J.), Zworski (M.).— Complex scaling and the distribution of scattering poles, J. of Amer. Math. Soc., 4(4), p. 729-769 (1991). Zbl0752.35046MR1115789
  19. Sjöstrand (J.), Zworski (M.).— Elementary linear algebra for advanced spectral problems, preprint (2003). 
  20. Soffer (A.), Weinstein (M.I.).— Time dependent resonance theory and perturbations of embedded eigenvalues. Partial differential equations and their applications (Toronto, 1995), p. 277–282, CRM Proc. Lecture Notes, 12, Amer. Math. Soc., Providence, RI (1997). MR1479253
  21. Wang (X.P.).— Microlocal resolvent estimates for N-body Schrödinger operators, J. of the Faculty of Sc., Univ. Tokyo, Sec. IA,40, p. 337-385 (1993). Zbl0810.35073MR1255046
  22. Wang (X.P.).— Asymptotic behavior of the resolvent of N-body Schrödinger operators near a threshold, Ann. Henri Poincaré, 4, p. 553-600 (2003). Zbl1049.81026MR2007257
  23. Wang (X.P.).— Threshold energy resonance in geometric scattering, Matemática Contemporânea, 26, p. 135-164 (2004). Zbl1159.58310MR2111819
  24. Wang (X.P.), Wang (Y.F.).— Existence of two-cluster threshold resonances and the N-body Efimov effect, J. Math. Phys., 46(11) p. 112106-1 – 112106-12, (2005). Zbl1111.81146MR2186763

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.