Weak analytic hyperbolicity of generic hypersurfaces of high degree in 4

Erwan Rousseau[1]

  • [1] Département de Mathématiques, IRMA, Université Louis Pasteur, 7, rue René Descartes, 67084 Strasbourg, France.

Annales de la faculté des sciences de Toulouse Mathématiques (2007)

  • Volume: 16, Issue: 2, page 369-383
  • ISSN: 0240-2963

Abstract

top
In this article we prove that every entire curve in a generic hypersurface of degree d 593 in 4 is algebraically degenerated i.e there exists a proper subvariety which contains the entire curve.

How to cite

top

Rousseau, Erwan. "Weak analytic hyperbolicity of generic hypersurfaces of high degree in $\mathbb{P}^{4}$." Annales de la faculté des sciences de Toulouse Mathématiques 16.2 (2007): 369-383. <http://eudml.org/doc/10055>.

@article{Rousseau2007,
abstract = {In this article we prove that every entire curve in a generic hypersurface of degree $d\ge 593$ in $\{\mathbb\{P\}\}_\{\mathbb\{C\}\}^\{4\}$ is algebraically degenerated i.e there exists a proper subvariety which contains the entire curve.},
affiliation = {Département de Mathématiques, IRMA, Université Louis Pasteur, 7, rue René Descartes, 67084 Strasbourg, France.},
author = {Rousseau, Erwan},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {hyperbolic manifold; entire curves; jet differentials; Kobayashi conjecture; hypersurfaces},
language = {eng},
number = {2},
pages = {369-383},
publisher = {Université Paul Sabatier, Toulouse},
title = {Weak analytic hyperbolicity of generic hypersurfaces of high degree in $\mathbb\{P\}^\{4\}$},
url = {http://eudml.org/doc/10055},
volume = {16},
year = {2007},
}

TY - JOUR
AU - Rousseau, Erwan
TI - Weak analytic hyperbolicity of generic hypersurfaces of high degree in $\mathbb{P}^{4}$
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2007
PB - Université Paul Sabatier, Toulouse
VL - 16
IS - 2
SP - 369
EP - 383
AB - In this article we prove that every entire curve in a generic hypersurface of degree $d\ge 593$ in ${\mathbb{P}}_{\mathbb{C}}^{4}$ is algebraically degenerated i.e there exists a proper subvariety which contains the entire curve.
LA - eng
KW - hyperbolic manifold; entire curves; jet differentials; Kobayashi conjecture; hypersurfaces
UR - http://eudml.org/doc/10055
ER -

References

top
  1. Bogomolov (F.A.).— Holomorphic tensors and vector bundles on projective varieties, Math. USSR Izvestija 13, p. 499-555 (1979). Zbl0439.14002
  2. Clemens (H.).— Curves on generic hypersurface, Ann. Sci. Ec. Norm. Sup., 19, p. 629-636 (1986). Zbl0611.14024MR875091
  3. Demailly (J.-P.).— Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials, Proc. Sympos. Pure Math., vol.62, Amer. Math.Soc., Providence, RI, p.285-360 ( 1997). Zbl0919.32014MR1492539
  4. Demailly (J.-P.), ElGoul J..— Hyperbolicity of generic surfaces of high degree in projective 3-space, Amer. J. Math 122, p. 515-546 (2000). Zbl0966.32014MR1759887
  5. Ein (L.).— Subvarieties of generic complete intersections, Invent. Math., 94, p. 163-169 (1988). Zbl0701.14002MR958594
  6. Fulton (W.).— Intersection theory, Springer-Verlag, Berlin (1998). Zbl0541.14005MR1644323
  7. Green (M.), Griffiths P..— Two applications of algebraic geometry to entire holomorphic mappings, The Chern Symposium 1979, Proc. Inter. Sympos. Berkeley, CA, 1979, Springer-Verlag, New-York, p. 41-74 (1980). Zbl0508.32010MR609557
  8. Kobayashi (S.).— Hyperbolic manifolds and holomorphic mappings, Marcel Dekker, New York (1970). Zbl0207.37902MR277770
  9. McQuillan (M.).— Diophantine approximations and foliations, in Publ. Math. IHES (1998). Zbl1006.32020MR1659270
  10. Paun (M.).— Vector fields on the total space of hypersurfaces in the projective space and hyperbolicity, preprint (2005). 
  11. Rousseau (E.).— Etude des jets de Demailly-Semple en dimension 3, Ann. Inst. Fourier, 56, p. 397-421 (2006). Zbl1092.58003MR2226021
  12. Rousseau (E.).— Equations différentielles sur les hypersurfaces de 4 , to appear in J. Math. Pures Appl. (2006). Zbl1115.14009MR2257847
  13. Siu (Y.-T.).— Hyperbolicity in complex geometry, The legacy of Niels Henrik Abel, Springer, Berlin, p. 543-566 (2004). Zbl1076.32011MR2077584
  14. Voisin (C.).— On a conjecture of Clemens on rational curves on hypersurfaces, J. Diff. Geom., 44, p. 200-213 (1996). Zbl0883.14022MR1420353

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.