Low pole order frames on vertical jets of the universal hypersurface
Joël Merker[1]
- [1] tabacckludge ’Ecole Normale Supérieure UMR 8553 du CNRS Département de Mathématiques et Applications 45 rue d’Ulm 75230 Paris Cedex 05 (France)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 3, page 1077-1104
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMerker, Joël. "Low pole order frames on vertical jets of the universal hypersurface." Annales de l’institut Fourier 59.3 (2009): 1077-1104. <http://eudml.org/doc/10417>.
@article{Merker2009,
abstract = {For low order jets, it is known how to construct meromorphic frames on the space of the so-called vertical $k$-jets$J_\{\text\{\textsf \{vert\}\}\}^k (\mathcal\{X\})$ of the universal hypersurface\[ \mathcal\{X\} \subset \mathbb\{P\}^\{n+1\} \times \mathbb\{P\}^\{\frac\{(n+1+d)!\}\{((n+1)! d!)\}-1\} \]parametrizing all projective hypersurfaces $X \subset \mathbb\{P\}^\{n+1\} (\mathbb\{C\})$ of degree $d$. In 2004, for $k = n$, Siu announced that there exist two constants $c_n \ge 1$ and $c_n^\{\prime\} \ge 1$ such that the twisted tangent bundle\[ T\_\{J\_\{\text\{\textsf \{vert\}\}\}^n(\mathcal\{X\})\} \otimes \mathcal\{O\}\_\{\mathbb\{P\}^\{n+1\}\} (c\_n) \otimes \mathcal\{O\}\_\{\mathbb\{P\}^\{\frac\{(n+1+d)!\}\{((n+1)! d!)\}-1\}\} (c\_n^\{\prime\}) \]is generated at every point by its global sections. In the present article, we establish this property outside a certain exceptional algebraic subset $\Sigma \subset J_\{\text\{\textsf \{vert\}\}\}^n (\mathcal\{ X\})$ defined by the vanishing of certain Wronskians, with the effective pole order $c_n = \frac\{1\}\{2\}(\{ n^2 + 5n\})$, thus recovering $c_2 = 7$ (Paŭn), $c_3 = 12$ (Rousseau), and with $c_n^\{\prime\} = 1$.Moreover, at the cost of raising $c_n$ up to $c_n = n^2 + 2n$, the same generation property holds outside the smaller set $\widetilde\{\Sigma \} \subset \Sigma \subset J_\{\text\{\textsf \{vert\}\}\}^n (\mathcal\{ X\})$ which is defined by the vanishing of all first order jets. Applications to weak (with $\Sigma $) and to strong (with $\widetilde\{\Sigma \}$) algebraic degeneracy of entire holomorphic curves $\mathbb\{C\} \rightarrow X$ are upcoming.},
affiliation = {tabacckludge ’Ecole Normale Supérieure UMR 8553 du CNRS Département de Mathématiques et Applications 45 rue d’Ulm 75230 Paris Cedex 05 (France)},
author = {Merker, Joël},
journal = {Annales de l’institut Fourier},
keywords = {Multivariate Faà di Bruno formula; projective algebraic hypersurfaces; jets of holomorphic curves; weak and strong Green-Griffiths algebraic degeneracy; multivariate Faà di Bruno formula},
language = {eng},
number = {3},
pages = {1077-1104},
publisher = {Association des Annales de l’institut Fourier},
title = {Low pole order frames on vertical jets of the universal hypersurface},
url = {http://eudml.org/doc/10417},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Merker, Joël
TI - Low pole order frames on vertical jets of the universal hypersurface
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 3
SP - 1077
EP - 1104
AB - For low order jets, it is known how to construct meromorphic frames on the space of the so-called vertical $k$-jets$J_{\text{\textsf {vert}}}^k (\mathcal{X})$ of the universal hypersurface\[ \mathcal{X} \subset \mathbb{P}^{n+1} \times \mathbb{P}^{\frac{(n+1+d)!}{((n+1)! d!)}-1} \]parametrizing all projective hypersurfaces $X \subset \mathbb{P}^{n+1} (\mathbb{C})$ of degree $d$. In 2004, for $k = n$, Siu announced that there exist two constants $c_n \ge 1$ and $c_n^{\prime} \ge 1$ such that the twisted tangent bundle\[ T_{J_{\text{\textsf {vert}}}^n(\mathcal{X})} \otimes \mathcal{O}_{\mathbb{P}^{n+1}} (c_n) \otimes \mathcal{O}_{\mathbb{P}^{\frac{(n+1+d)!}{((n+1)! d!)}-1}} (c_n^{\prime}) \]is generated at every point by its global sections. In the present article, we establish this property outside a certain exceptional algebraic subset $\Sigma \subset J_{\text{\textsf {vert}}}^n (\mathcal{ X})$ defined by the vanishing of certain Wronskians, with the effective pole order $c_n = \frac{1}{2}({ n^2 + 5n})$, thus recovering $c_2 = 7$ (Paŭn), $c_3 = 12$ (Rousseau), and with $c_n^{\prime} = 1$.Moreover, at the cost of raising $c_n$ up to $c_n = n^2 + 2n$, the same generation property holds outside the smaller set $\widetilde{\Sigma } \subset \Sigma \subset J_{\text{\textsf {vert}}}^n (\mathcal{ X})$ which is defined by the vanishing of all first order jets. Applications to weak (with $\Sigma $) and to strong (with $\widetilde{\Sigma }$) algebraic degeneracy of entire holomorphic curves $\mathbb{C} \rightarrow X$ are upcoming.
LA - eng
KW - Multivariate Faà di Bruno formula; projective algebraic hypersurfaces; jets of holomorphic curves; weak and strong Green-Griffiths algebraic degeneracy; multivariate Faà di Bruno formula
UR - http://eudml.org/doc/10417
ER -
References
top- H. Clemens, Curves on generic hypersurfaces, Ann. Sci. École Norm. Sup. 19 (1986), 629-636 Zbl0611.14024MR875091
- G. M. Constantine, T. H. Savits, A multivariate Faà di Bruno formula with applications, Trans. Amer. Math. Soc. 348 (1996), 503-520 Zbl0846.05003MR1325915
- J.-P. Demailly, Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials, Proc. Sympos. Pure Math. Amer. Math. Soc. 62 (1997), 285-360 Zbl0919.32014MR1492539
- S. Diverio, Existence of global invariant jet differentials on projective hypersurfaces of high degree Zbl1166.32013
- S. Diverio, Differential equations on complex projective hypersurfaces of low dimension, Compos. Math. 144 (2008), 920-932 Zbl1193.32013MR2441250
- S. Diverio, J. Merker, E. Rousseau, Effective algebraic degeneracy, (nov. 2008) Zbl1192.32014
- J. Duval, Sur le lemme de Brody, Invent. Math. 173 (2008), 305-314 Zbl1155.32017MR2415309
- L. Ein, Subvarieties of generic complete intersections, Invent. Math. 94 (1988), 163-169 Zbl0701.14002MR958594
- M. Green, P. Griffiths, Two applications of algebraic geometry to entire holomorphic mappings, The Chern Symposium 1979, Proc. Inter. Sympos. Berkeley, CA, 1979 (1980), 41-74, Springer-Verlag, New York Zbl0508.32010MR609557
- J. Merker, An algorihm to generate all polynomials in the -jet of a holomorphic disc that are invariant under source reparametrization
- J. Merker, Four explicit formulas for the prolongations of an infinitesimal Lie symmetry and multivariate Faà di Bruno formulas
- J. Merker, Jets de Demailly-Semple d’ordres 4 et 5 en dimension 2, Int. J. Contemp. Math. Sciences 3 (2008), 861-933 Zbl1161.13002MR2477967
- M. Paŭn, Vector fields on the total space of hypersurfaces in the projective space and hyperbolicity, Math. Ann. 340 (2008), 875-892 Zbl1137.32010MR2372741
- E. Rousseau, Weak analytic hyperbolicity of complements of generic surfaces of high degree in projective 3-space, Osaka J. Math. 44 (2007), 955-971 Zbl1140.32013MR2383820
- E. Rousseau, Weak analytic hyperbolicity of generic hypersurfaces of high degree in , Ann. Fac. Sci. Toulouse XIV (2007), 369-383 Zbl1132.32010MR2331545
- Erwan Rousseau, Équations différentielles sur les hypersurfaces de , J. Math. Pures Appl. (9) 86 (2006), 322-341 Zbl1115.14009MR2257847
- Erwan Rousseau, Étude des jets de Demailly-Semple en dimension 3, Ann. Inst. Fourier 56 (2006), 397-421 Zbl1092.58003MR2226021
- Y.-T. Siu, Hyperbolicity in complex geometry, (2004), Springer-Verlag, Berlin Zbl1076.32011MR2077584
- S. Trapani, Numerical criteria for the positivity of the difference of ample divisors, Math. Z. 219 (1995), 387-401 Zbl0828.14002MR1339712
- C. Voisin, On a conjecture of Clemens on rational curves on hypersurfaces, J. Diff. Geom. 44 (1996), 200-213 Zbl0883.14022MR1420353
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.