Low pole order frames on vertical jets of the universal hypersurface

Joël Merker[1]

  • [1] tabacckludge ’Ecole Normale Supérieure UMR 8553 du CNRS Département de Mathématiques et Applications 45 rue d’Ulm 75230 Paris Cedex 05 (France)

Annales de l’institut Fourier (2009)

  • Volume: 59, Issue: 3, page 1077-1104
  • ISSN: 0373-0956

Abstract

top
For low order jets, it is known how to construct meromorphic frames on the space of the so-called vertical k -jets J vert k ( 𝒳 ) of the universal hypersurface 𝒳 n + 1 × ( n + 1 + d ) ! ( ( n + 1 ) ! d ! ) - 1 parametrizing all projective hypersurfaces X n + 1 ( ) of degree d . In 2004, for k = n , Siu announced that there exist two constants c n 1 and c n 1 such that the twisted tangent bundle T J vert n ( 𝒳 ) 𝒪 n + 1 ( c n ) 𝒪 ( n + 1 + d ) ! ( ( n + 1 ) ! d ! ) - 1 ( c n ) is generated at every point by its global sections. In the present article, we establish this property outside a certain exceptional algebraic subset Σ J vert n ( 𝒳 ) defined by the vanishing of certain Wronskians, with the effective pole order c n = 1 2 ( n 2 + 5 n ) , thus recovering c 2 = 7 (Paŭn), c 3 = 12 (Rousseau), and with c n = 1 .Moreover, at the cost of raising c n up to c n = n 2 + 2 n , the same generation property holds outside the smaller set Σ ˜ Σ J vert n ( 𝒳 ) which is defined by the vanishing of all first order jets. Applications to weak (with Σ ) and to strong (with  Σ ˜ ) algebraic degeneracy of entire holomorphic curves X are upcoming.

How to cite

top

Merker, Joël. "Low pole order frames on vertical jets of the universal hypersurface." Annales de l’institut Fourier 59.3 (2009): 1077-1104. <http://eudml.org/doc/10417>.

@article{Merker2009,
abstract = {For low order jets, it is known how to construct meromorphic frames on the space of the so-called vertical $k$-jets$J_\{\text\{\textsf \{vert\}\}\}^k (\mathcal\{X\})$ of the universal hypersurface\[ \mathcal\{X\} \subset \mathbb\{P\}^\{n+1\} \times \mathbb\{P\}^\{\frac\{(n+1+d)!\}\{((n+1)! d!)\}-1\} \]parametrizing all projective hypersurfaces $X \subset \mathbb\{P\}^\{n+1\} (\mathbb\{C\})$ of degree $d$. In 2004, for $k = n$, Siu announced that there exist two constants $c_n \ge 1$ and $c_n^\{\prime\} \ge 1$ such that the twisted tangent bundle\[ T\_\{J\_\{\text\{\textsf \{vert\}\}\}^n(\mathcal\{X\})\} \otimes \mathcal\{O\}\_\{\mathbb\{P\}^\{n+1\}\} (c\_n) \otimes \mathcal\{O\}\_\{\mathbb\{P\}^\{\frac\{(n+1+d)!\}\{((n+1)! d!)\}-1\}\} (c\_n^\{\prime\}) \]is generated at every point by its global sections. In the present article, we establish this property outside a certain exceptional algebraic subset $\Sigma \subset J_\{\text\{\textsf \{vert\}\}\}^n (\mathcal\{ X\})$ defined by the vanishing of certain Wronskians, with the effective pole order $c_n = \frac\{1\}\{2\}(\{ n^2 + 5n\})$, thus recovering $c_2 = 7$ (Paŭn), $c_3 = 12$ (Rousseau), and with $c_n^\{\prime\} = 1$.Moreover, at the cost of raising $c_n$ up to $c_n = n^2 + 2n$, the same generation property holds outside the smaller set $\widetilde\{\Sigma \} \subset \Sigma \subset J_\{\text\{\textsf \{vert\}\}\}^n (\mathcal\{ X\})$ which is defined by the vanishing of all first order jets. Applications to weak (with $\Sigma $) and to strong (with $\widetilde\{\Sigma \}$) algebraic degeneracy of entire holomorphic curves $\mathbb\{C\} \rightarrow X$ are upcoming.},
affiliation = {tabacckludge ’Ecole Normale Supérieure UMR 8553 du CNRS Département de Mathématiques et Applications 45 rue d’Ulm 75230 Paris Cedex 05 (France)},
author = {Merker, Joël},
journal = {Annales de l’institut Fourier},
keywords = {Multivariate Faà di Bruno formula; projective algebraic hypersurfaces; jets of holomorphic curves; weak and strong Green-Griffiths algebraic degeneracy; multivariate Faà di Bruno formula},
language = {eng},
number = {3},
pages = {1077-1104},
publisher = {Association des Annales de l’institut Fourier},
title = {Low pole order frames on vertical jets of the universal hypersurface},
url = {http://eudml.org/doc/10417},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Merker, Joël
TI - Low pole order frames on vertical jets of the universal hypersurface
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 3
SP - 1077
EP - 1104
AB - For low order jets, it is known how to construct meromorphic frames on the space of the so-called vertical $k$-jets$J_{\text{\textsf {vert}}}^k (\mathcal{X})$ of the universal hypersurface\[ \mathcal{X} \subset \mathbb{P}^{n+1} \times \mathbb{P}^{\frac{(n+1+d)!}{((n+1)! d!)}-1} \]parametrizing all projective hypersurfaces $X \subset \mathbb{P}^{n+1} (\mathbb{C})$ of degree $d$. In 2004, for $k = n$, Siu announced that there exist two constants $c_n \ge 1$ and $c_n^{\prime} \ge 1$ such that the twisted tangent bundle\[ T_{J_{\text{\textsf {vert}}}^n(\mathcal{X})} \otimes \mathcal{O}_{\mathbb{P}^{n+1}} (c_n) \otimes \mathcal{O}_{\mathbb{P}^{\frac{(n+1+d)!}{((n+1)! d!)}-1}} (c_n^{\prime}) \]is generated at every point by its global sections. In the present article, we establish this property outside a certain exceptional algebraic subset $\Sigma \subset J_{\text{\textsf {vert}}}^n (\mathcal{ X})$ defined by the vanishing of certain Wronskians, with the effective pole order $c_n = \frac{1}{2}({ n^2 + 5n})$, thus recovering $c_2 = 7$ (Paŭn), $c_3 = 12$ (Rousseau), and with $c_n^{\prime} = 1$.Moreover, at the cost of raising $c_n$ up to $c_n = n^2 + 2n$, the same generation property holds outside the smaller set $\widetilde{\Sigma } \subset \Sigma \subset J_{\text{\textsf {vert}}}^n (\mathcal{ X})$ which is defined by the vanishing of all first order jets. Applications to weak (with $\Sigma $) and to strong (with $\widetilde{\Sigma }$) algebraic degeneracy of entire holomorphic curves $\mathbb{C} \rightarrow X$ are upcoming.
LA - eng
KW - Multivariate Faà di Bruno formula; projective algebraic hypersurfaces; jets of holomorphic curves; weak and strong Green-Griffiths algebraic degeneracy; multivariate Faà di Bruno formula
UR - http://eudml.org/doc/10417
ER -

References

top
  1. H. Clemens, Curves on generic hypersurfaces, Ann. Sci. École Norm. Sup. 19 (1986), 629-636 Zbl0611.14024MR875091
  2. G. M. Constantine, T. H. Savits, A multivariate Faà di Bruno formula with applications, Trans. Amer. Math. Soc. 348 (1996), 503-520 Zbl0846.05003MR1325915
  3. J.-P. Demailly, Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials, Proc. Sympos. Pure Math. Amer. Math. Soc. 62 (1997), 285-360 Zbl0919.32014MR1492539
  4. S. Diverio, Existence of global invariant jet differentials on projective hypersurfaces of high degree Zbl1166.32013
  5. S. Diverio, Differential equations on complex projective hypersurfaces of low dimension, Compos. Math. 144 (2008), 920-932 Zbl1193.32013MR2441250
  6. S. Diverio, J. Merker, E. Rousseau, Effective algebraic degeneracy, (nov. 2008) Zbl1192.32014
  7. J. Duval, Sur le lemme de Brody, Invent. Math. 173 (2008), 305-314 Zbl1155.32017MR2415309
  8. L. Ein, Subvarieties of generic complete intersections, Invent. Math. 94 (1988), 163-169 Zbl0701.14002MR958594
  9. M. Green, P. Griffiths, Two applications of algebraic geometry to entire holomorphic mappings, The Chern Symposium 1979, Proc. Inter. Sympos. Berkeley, CA, 1979 (1980), 41-74, Springer-Verlag, New York Zbl0508.32010MR609557
  10. J. Merker, An algorihm to generate all polynomials in the k -jet of a holomorphic disc D n that are invariant under source reparametrization 
  11. J. Merker, Four explicit formulas for the prolongations of an infinitesimal Lie symmetry and multivariate Faà di Bruno formulas 
  12. J. Merker, Jets de Demailly-Semple d’ordres 4 et 5 en dimension 2, Int. J. Contemp. Math. Sciences 3 (2008), 861-933 Zbl1161.13002MR2477967
  13. M. Paŭn, Vector fields on the total space of hypersurfaces in the projective space and hyperbolicity, Math. Ann. 340 (2008), 875-892 Zbl1137.32010MR2372741
  14. E. Rousseau, Weak analytic hyperbolicity of complements of generic surfaces of high degree in projective 3-space, Osaka J. Math. 44 (2007), 955-971 Zbl1140.32013MR2383820
  15. E. Rousseau, Weak analytic hyperbolicity of generic hypersurfaces of high degree in 4 , Ann. Fac. Sci. Toulouse XIV (2007), 369-383 Zbl1132.32010MR2331545
  16. Erwan Rousseau, Équations différentielles sur les hypersurfaces de  4 , J. Math. Pures Appl. (9) 86 (2006), 322-341 Zbl1115.14009MR2257847
  17. Erwan Rousseau, Étude des jets de Demailly-Semple en dimension 3, Ann. Inst. Fourier 56 (2006), 397-421 Zbl1092.58003MR2226021
  18. Y.-T. Siu, Hyperbolicity in complex geometry, (2004), Springer-Verlag, Berlin Zbl1076.32011MR2077584
  19. S. Trapani, Numerical criteria for the positivity of the difference of ample divisors, Math. Z. 219 (1995), 387-401 Zbl0828.14002MR1339712
  20. C. Voisin, On a conjecture of Clemens on rational curves on hypersurfaces, J. Diff. Geom. 44 (1996), 200-213 Zbl0883.14022MR1420353

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.