Poincaré-Hopf index and partial hyperbolicity

C. A Morales[1]

  • [1] Instituto de Matematica, Universidade Federal do Rio de Janeiro, P. O. Box 68530, 21945-970 Rio de Janeiro, Brazil.

Annales de la faculté des sciences de Toulouse Mathématiques (2008)

  • Volume: 17, Issue: 1, page 193-206
  • ISSN: 0240-2963

Abstract

top
We use the theory of partially hyperbolic systems [HPS] in order to find singularities of index 1 for vector fields with isolated zeroes in a 3 -ball. Indeed, we prove that such zeroes exists provided the maximal invariant set in the ball is partially hyperbolic, with volume expanding central subbundle, and the strong stable manifolds of the singularities are unknotted in the ball.

How to cite

top

Morales, C. A. "Poincaré-Hopf index and partial hyperbolicity." Annales de la faculté des sciences de Toulouse Mathématiques 17.1 (2008): 193-206. <http://eudml.org/doc/10076>.

@article{Morales2008,
abstract = {We use the theory of partially hyperbolic systems [HPS] in order to find singularities of index $1$ for vector fields with isolated zeroes in a $3$-ball. Indeed, we prove that such zeroes exists provided the maximal invariant set in the ball is partially hyperbolic, with volume expanding central subbundle, and the strong stable manifolds of the singularities are unknotted in the ball.},
affiliation = {Instituto de Matematica, Universidade Federal do Rio de Janeiro, P. O. Box 68530, 21945-970 Rio de Janeiro, Brazil.},
author = {Morales, C. A},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {partially hyperbolic systems; index; stable manifolds},
language = {eng},
month = {6},
number = {1},
pages = {193-206},
publisher = {Université Paul Sabatier, Toulouse},
title = {Poincaré-Hopf index and partial hyperbolicity},
url = {http://eudml.org/doc/10076},
volume = {17},
year = {2008},
}

TY - JOUR
AU - Morales, C. A
TI - Poincaré-Hopf index and partial hyperbolicity
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2008/6//
PB - Université Paul Sabatier, Toulouse
VL - 17
IS - 1
SP - 193
EP - 206
AB - We use the theory of partially hyperbolic systems [HPS] in order to find singularities of index $1$ for vector fields with isolated zeroes in a $3$-ball. Indeed, we prove that such zeroes exists provided the maximal invariant set in the ball is partially hyperbolic, with volume expanding central subbundle, and the strong stable manifolds of the singularities are unknotted in the ball.
LA - eng
KW - partially hyperbolic systems; index; stable manifolds
UR - http://eudml.org/doc/10076
ER -

References

top
  1. Afraimovich (V.S.), Bykov (V. V.), Shilnikov (L. P.).— On attracting structurally unstable limit sets of Lorenz attractor type (Russian) Trudy Moskov. Mat. Obshch. 44, 150-212 (1982). Zbl0506.58023MR656286
  2. Bautista (S.).— Sobre conjuntos singulares-hiperbólicos, Thesis Universidade Federal do Rio de Janeiro (2005). 
  3. Bautista (S.), Morales (C.).— Existence of periodic orbits for singular-hyperbolic sets, Mosc. Math. J. 6, no. 2, 265-297 (2006). Zbl1124.37021MR2270614
  4. Bing (R. H.), Martin (J. M.), Cubes with knotted holes, Trans. Amer. Math. Soc. 155, 217-231 (1971). Zbl0213.25005MR278287
  5. Bonatti (C.), Diaz (L.), Viana (M.).— Dynamics beyond uniform hyperbolicity. A global geometric and probabilistic perspective, Encyclopaedia of Mathematical Sciences, 102. Mathematical Physics, III. Springer-Verlag, Berlin, 2005. Zbl1060.37020MR2105774
  6. Brunella (M.).— Separating basic sets of a nontransitive Anosov flow, Bull. London Math. Soc. 25, 487-490 (1993). Zbl0790.58028MR1233413
  7. Cima (A.), Mañosas (F.), Villadelprat (J.).— A Poincaré-Hopf theorem for noncompact manifolds, (English. English summary) Topology 37, no. 2, 261-277 (1998). Zbl0894.55002MR1489204
  8. Conley (C.).— Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics, 38. American Mathematical Society, Providence, R.I., 1978. Zbl0397.34056MR511133
  9. Dancer (E. N.), Ortega (R.).— The index of Lyapunov stable fixed points in two dimensions, (English. English summary) J. Dynam. Differential Equations 6, no. 4, 631-637 (1994). Zbl0811.34018MR1303278
  10. Eliashberg (Ya. M.).— Combinatorial methods in symplectic geometry, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), 531-539, Amer. Math. Soc., Providence, RI, 1987. Zbl0664.53017MR934253
  11. Franks (J.).— Rotation vectors and fixed points of area preserving surface diffeomorphisms, (English. English summary) Trans. Amer. Math. Soc. 348, no. 7, 2637-2662 (1996). Zbl0862.58006MR1325916
  12. Gabai (D.).— 3 lectures on foliations and laminations on 3-manifolds, Laminations and foliations in dynamics, geometry and topology (Stony Brook, NY, 1998), 87-109, Contemp. Math., 269, Amer. Math. Soc., Providence, RI, 2001. Zbl0981.57008MR1810537
  13. Gilmore (R.), Tsankov (T.).— Topological aspects of the structure of chaotic attractors in 3 , (English. English summary) Phys. Rev. E (3) 69 (2004), no. 5, 056206, 11 pp. MR2096543
  14. Guckenheimer (J.), Williams (R.).— Structural stability of Lorenz attractors, Publ Math IHES 50, 59-72 (1979). Zbl0436.58018MR556582
  15. Grines (V. Z.), Medvedev (V. S.), Zhuzhoma (E. V.).— New relations for Morse-Smale systems with trivially embedded one-dimensional separatrices, (Russian) Mat. Sb. 194, no. 7, 25-56; translation in Sb. Math. 194 (2003), no. 7-8, 979-1007 (2003). Zbl1077.37025MR2020377
  16. Hasselblatt (B.), Katov (A.).— Introduction to the modern theory of dynamical systems, Cambridge University Press, Cambridge (1995). Zbl0878.58020MR1326374
  17. Hirsch (M.), Pugh (C.), Shub (M.).— Invariant manifolds, Lec. Not. in Math. 583 (1977), Springer-Verlag. Zbl0355.58009MR501173
  18. Le Calvez (P.).— Une propriété dynamique des homéomorphismes du plan au voisinage d’un point fixe d’indice &gt; 1 (French. English, French summary) [A dynamical property of homeomorphisms of the plane in the neighborhood of a fixed point of index &gt; 1 ] Topology 38, no. 1, 23-35 (1999). Zbl0976.54046
  19. Matsumoto (S.).— Arnold conjecture for surface homeomorphisms (English. English summary) Proceedings of the French-Japanese Conference “Hyperspace Topologies and Applications" (La Bussiére, 1997). Topology Appl. 104, no. 1-3, 191-214 (2000). Zbl0974.37040
  20. Milnor (J.).— Topology from the differentiable viewpoint, Based on notes by David W. Weaver The University Press of Virginia, Charlottesville, Va. 1965. Zbl0136.20402MR226651
  21. Morales (C.).— Examples of singular-hyperbolic attracting sets, Dyn. Syst. (To appear). Zbl1153.37016MR2354969
  22. Morales (C.), Pacifico (M. J.), Pujals (E. R.).— Strange attractors across the boundary of hyperbolic systems, Comm. Math. Phys. 211, no. 3, 527-558 (2000). Zbl0957.37032MR1773807
  23. Morales (C.), Pacifico (M. J.), Pujals (E. R.).— Singular-hyperbolic systems, Proc. Amer. Math. Soc. 127, no. 11, 3393-3401 (1999). Zbl0924.58068MR1610761
  24. Morales (C.), Pujals (E. R.).— Singular strange attractors on the boundary of Morse-Smale systems, Ann. Sci. École Norm. Sup. (4) 30, no. 6, 693-717 (1997). Zbl0911.58022MR1476293
  25. Palis (J.), de Melo (W.).— Geometric theory of dynamical systems. An introduction., Translated from the Portuguese by A. K. Manning. Springer-Verlag, New York- Berlin, 1982. Zbl0491.58001MR669541

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.