Hölder regularity of two-dimensional almost-minimal sets in
Guy David[1]
- [1] Mathématiques, Bâtiment 425, Université de Paris-Sud 11, 91 405 Orsay Cedex, France
Annales de la faculté des sciences de Toulouse Mathématiques (2009)
- Volume: 18, Issue: 1, page 65-246
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topDavid, Guy. "Hölder regularity of two-dimensional almost-minimal sets in $\mathbb{R}^n$." Annales de la faculté des sciences de Toulouse Mathématiques 18.1 (2009): 65-246. <http://eudml.org/doc/10108>.
@article{David2009,
abstract = {We give a different and probably more elementary proof of a good part of Jean Taylor’s regularity theorem for Almgren almost-minimal sets of dimension $2$ in $\{\mathbb\{R\}\}^3$. We use this opportunity to settle some details about almost-minimal sets, extend a part of Taylor’s result to almost-minimal sets of dimension $2$ in $\mathbb\{R\}^n$, and give the expected characterization of the closed sets $E$ of dimension $2$ in $\{\mathbb\{R\}\}^3$ that are minimal, in the sense that $H^2(E\setminus F) \le H^2(F\setminus E)$ for every closed set $F$ such that there is a bounded set $B$ so that $F=E$ out of $B$ and $F$ separates points of $\{\mathbb\{R\}\}^3 \setminus B$ that $E$ separates.},
affiliation = {Mathématiques, Bâtiment 425, Université de Paris-Sud 11, 91 405 Orsay Cedex, France},
author = {David, Guy},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {regularity theorem; almost-minimal sets of dimension 2 in },
language = {eng},
month = {6},
number = {1},
pages = {65-246},
publisher = {Université Paul Sabatier, Toulouse},
title = {Hölder regularity of two-dimensional almost-minimal sets in $\mathbb\{R\}^n$},
url = {http://eudml.org/doc/10108},
volume = {18},
year = {2009},
}
TY - JOUR
AU - David, Guy
TI - Hölder regularity of two-dimensional almost-minimal sets in $\mathbb{R}^n$
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2009/6//
PB - Université Paul Sabatier, Toulouse
VL - 18
IS - 1
SP - 65
EP - 246
AB - We give a different and probably more elementary proof of a good part of Jean Taylor’s regularity theorem for Almgren almost-minimal sets of dimension $2$ in ${\mathbb{R}}^3$. We use this opportunity to settle some details about almost-minimal sets, extend a part of Taylor’s result to almost-minimal sets of dimension $2$ in $\mathbb{R}^n$, and give the expected characterization of the closed sets $E$ of dimension $2$ in ${\mathbb{R}}^3$ that are minimal, in the sense that $H^2(E\setminus F) \le H^2(F\setminus E)$ for every closed set $F$ such that there is a bounded set $B$ so that $F=E$ out of $B$ and $F$ separates points of ${\mathbb{R}}^3 \setminus B$ that $E$ separates.
LA - eng
KW - regularity theorem; almost-minimal sets of dimension 2 in
UR - http://eudml.org/doc/10108
ER -
References
top- Almgren (F. J.).— Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure, Ann. of Math. (2) 87, p. 321-391 (1968). Zbl0162.24703MR225243
- Almgren (F. J.).— Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Memoirs of the Amer. Math. Soc. 165, volume 4, p. i-199 (1976). Zbl0327.49043MR420406
- Bombieri (E.).— Regularity theory for almost minimal currents, Arch. Rational Mech. Anal. 78, n 2, p. 99-130 (1982). Zbl0485.49024MR648941
- Dal Maso (G.), Morel (J.-M.) and Solimini (S.).— A variational method in image segmentation: Existence and approximation results, Acta Math. 168, n 1-2, p. 89-151 (1992). Zbl0772.49006MR1149865
- David (G.).— Limits of Almgren-quasiminimal sets, Proceedings of the conference on Harmonic Analysis, Mount Holyoke, A.M.S. Contemporary Mathematics series, Vol. 320, p. 119-145 (2003). Zbl1090.49025MR1979936
- David (G.).— Singular sets of minimizers for the Mumford-Shah functional, Progress in Mathematics 233 (581p.), Birkhäuser 2005. Zbl1086.49030MR2129693
- David (G.).— Quasiminimal sets for Hausdorff measures, Recent developments in nonlinear partial differential equations, p. 81-99, Contemp. Math., 439, Amer. Math. Soc., Providence, RI (2007). Zbl1137.49038MR2359022
- David (G.).— -regularity for two-dimensional almost-minimal sets in , preprint, available on arXiv, Hal, or at http://mahery.math.u-psud.fr/ gdavid
- David (G.), De Pauw (T.) and Toro (T.).— A generalization of Reifenberg’s theorem in , to appear, Geom. Funct. Anal. Zbl1169.49040
- David (G.) and Semmes (S.).— Uniform rectifiability and quasiminimizing sets of arbitrary codimension, Memoirs of the A.M.S. Number 687, volume 144 (2000). Zbl0966.49024MR1683164
- Dold (A.).— Lectures on algebraic topology, Second edition, Grundlehren der Mathematishen Wissenschaften 200, Springer Verlag (1980). Zbl0434.55001MR606196
- Dugundji (J.).— Topology, Allyn and Bacon, Boston (1966). Zbl0144.21501MR193606
- Heppes (A.).— Isogonal sphärischen Netze, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 7, p. 41-48 (1964). Zbl0127.37601MR173193
- Federer (H.).— Geometric measure theory, Grundlehren der Mathematishen Wissenschaften 153, Springer Verlag (1969). Zbl0176.00801MR257325
- Feuvrier (V.).— Un résultat d’existence pour les ensembles minimaux par optimisation sur des grilles polyédrales, Thèse de l’université de Paris-Sud 11, Orsay, Septembre 2008.
- Lamarle (E.).— Sur la stabilité des systèmes liquides en lames minces, Mém. Acad. R. Belg. 35, p. 3-104 (1864).
- Lawlor (G.) and Morgan (F.).— Paired calibrations applied to soap films, immiscible fluids, and surfaces or networks minimizing other norms, Pacific J. Math. 166, n 1, p. 55-83 (1994). Zbl0830.49028MR1306034
- Lemenant (A.).— Sur la régularité des minimiseurs de Mumford-Shah en dimension 3 et supérieure, Thèse de l’université de Paris-Sud 11, Orsay, Juin 2008.
- Mattila (P.).— Geometry of sets and measures in Euclidean space, Cambridge Studies in Advanced Mathematics 44, Cambridge University Press (l995). Zbl0911.28005MR1333890
- Morgan (F.).— Area-minimizing currents bounded by higher multiples of curves, Rend. Circ. Mat. Palermo 33, p. 37-46 (1984). Zbl0541.49018MR743207
- Morgan (F.).— Size-minimizing rectifiable currents, Invent. Math. 96, n 2, p. 333-348 (1989). Zbl0645.49024
- Morgan (F.).— -minimal curve regularity, Proc. Amer. Math. Soc. 120, n 3, p. 677-686 (1994). Zbl0804.49033MR1169884
- Morgan (F.).— Geometric measure theory. A beginner’s guide, Second edition. Academic Press, Inc., San Diego, CA, x+175 pp (1995). Zbl0819.49024MR1326605
- Reifenberg (E. R.).— Solution of the Plateau Problem for -dimensional surfaces of varying topological type, Acta Math. 104, p. 1-92 (1960). Zbl0099.08503MR114145
- Reifenberg (E. R.).— Epiperimetric Inequality related to the analyticity of minimal surfaces, Annals Math., 80, p. 1-14 (1964). Zbl0151.16701MR171197
- Reifenberg (E. R.).— On the analyticity of minimal surfaces, Annals of Math., 80, p. 15-21 (1964). Zbl0151.16702MR171198
- Schoen (R.) and Simon (L.).— A new proof of the regularity theorem for rectifiable currents which minimize parametric elliptic functionals, Indiana Univ. Math. J. 31, n 3, p. 415-434 (1982). Zbl0516.49026MR652826
- Stein (E. M.).— Singular integrals and differentiability properties of functions, Princeton university press (1970). Zbl0207.13501MR290095
- Tamanini (I.).— Regularity results for almost minimal oriented hypersurfaces in , Quaderni del dipartimento di matematica dell’universitá di Lecce (1984).
- Taylor (J.).— The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces, Ann. of Math. (2) 103, n 3, p. 489-539 (1976). Zbl0335.49032MR428181
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.