On some properties of three-dimensional minimal sets in
Annales de la faculté des sciences de Toulouse Mathématiques (2013)
- Volume: 22, Issue: 3, page 465-493
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topLuu, Tien Duc. "On some properties of three-dimensional minimal sets in ${\mathbb{R}}^4$." Annales de la faculté des sciences de Toulouse Mathématiques 22.3 (2013): 465-493. <http://eudml.org/doc/275284>.
@article{Luu2013,
abstract = {We prove in this paper the Hölder regularity of Almgren minimal sets of dimension 3 in $\{\mathbb\{R\}\}^4$ around a $\{\mathbb\{Y\}\}$-point and the existence of a point of particular type of a Mumford-Shah minimal set in $\{\mathbb\{R\}\}^4$, which is very close to a $\{\mathbb\{T\}\}$. This will give a local description of minimal sets of dimension 3 in $\{\mathbb\{R\}\}^4$ around a singular point and a property of Mumford-Shah minimal sets in $\{\mathbb\{R\}\}^4$.},
author = {Luu, Tien Duc},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Almgren minimal sets; Hölder regularity; Mumford-Shah minimal sets},
language = {eng},
month = {6},
number = {3},
pages = {465-493},
publisher = {Université Paul Sabatier, Toulouse},
title = {On some properties of three-dimensional minimal sets in $\{\mathbb\{R\}\}^4$},
url = {http://eudml.org/doc/275284},
volume = {22},
year = {2013},
}
TY - JOUR
AU - Luu, Tien Duc
TI - On some properties of three-dimensional minimal sets in ${\mathbb{R}}^4$
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2013/6//
PB - Université Paul Sabatier, Toulouse
VL - 22
IS - 3
SP - 465
EP - 493
AB - We prove in this paper the Hölder regularity of Almgren minimal sets of dimension 3 in ${\mathbb{R}}^4$ around a ${\mathbb{Y}}$-point and the existence of a point of particular type of a Mumford-Shah minimal set in ${\mathbb{R}}^4$, which is very close to a ${\mathbb{T}}$. This will give a local description of minimal sets of dimension 3 in ${\mathbb{R}}^4$ around a singular point and a property of Mumford-Shah minimal sets in ${\mathbb{R}}^4$.
LA - eng
KW - Almgren minimal sets; Hölder regularity; Mumford-Shah minimal sets
UR - http://eudml.org/doc/275284
ER -
References
top- . Almgren (F. J.).— Some interior regularity theorems for minimal surfaces and an extension of Bernstein’s Theorem, Ann. of Math (2), Vol. 84, p. 277-292 (1966). Zbl0146.11905MR200816
- . Allard (W. K.).— On the First Variation of a Varifold, Ann. of Math (2), Vol. 95, p. 417-491 (1972). Zbl0252.49028MR307015
- . David (G.).— Hölder regularity of two-dimensional almost-minimal sets in , Ann. Fac. Sci. Toulouse Math, (6), 18(1) p. 65-246 (2009). Zbl1213.49051MR2518104
- . David (G.).— -regularity for two dimensional almost-minimal sets in , Journal of Geometric Analysis, Vol 20, Number 4, p. 837-954. Zbl1225.49044MR2683770
- . David (G.).— Singular sets of minimizers for the Mumford-Shah functional, Progress in Mathematics 233 (581p.), Birkhäuser (2005). Zbl1086.49030MR2129693
- . David (G.), De Pauw (T.), and Toro (T.).— A generalization of Reifenberg’s theorem in , Geom. Funct. Anal. Vol. 18, p. 1168-1235 (2008). Zbl1169.49040MR2465688
- . David (G.) and Semmes (S.).— Uniform rectifiability and quasiminimizing sets of arbitrary codimension, Memoirs of the A.M.S. Number 687, Vol 144 (2000). Zbl0966.49024MR1683164
- . Dugundji (J.).— Topology, Allyn and Bacon, Boston (1966). Zbl0397.54003MR193606
- . Federer (H.).— Geometric measure theory, Grundlehren der Mathematishen Wissenschaften 153, Springer Verlag (1969). Zbl0176.00801MR257325
- . Simons (J.).— Minimal varieties in riemannian manifolds, Ann. of Math, (2), Vol. 88, p. 62-105 (1968). Zbl0181.49702MR233295
- . Taylor (J.).— The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces, Ann. of Math. (2) 103, no. 3, p. 489-539 (1976). Zbl0335.49032MR428181
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.