On some properties of three-dimensional minimal sets in 4

Tien Duc Luu

Annales de la faculté des sciences de Toulouse Mathématiques (2013)

  • Volume: 22, Issue: 3, page 465-493
  • ISSN: 0240-2963

Abstract

top
We prove in this paper the Hölder regularity of Almgren minimal sets of dimension 3 in 4 around a 𝕐 -point and the existence of a point of particular type of a Mumford-Shah minimal set in 4 , which is very close to a 𝕋 . This will give a local description of minimal sets of dimension 3 in 4 around a singular point and a property of Mumford-Shah minimal sets in 4 .

How to cite

top

Luu, Tien Duc. "On some properties of three-dimensional minimal sets in ${\mathbb{R}}^4$." Annales de la faculté des sciences de Toulouse Mathématiques 22.3 (2013): 465-493. <http://eudml.org/doc/275284>.

@article{Luu2013,
abstract = {We prove in this paper the Hölder regularity of Almgren minimal sets of dimension 3 in $\{\mathbb\{R\}\}^4$ around a $\{\mathbb\{Y\}\}$-point and the existence of a point of particular type of a Mumford-Shah minimal set in $\{\mathbb\{R\}\}^4$, which is very close to a $\{\mathbb\{T\}\}$. This will give a local description of minimal sets of dimension 3 in $\{\mathbb\{R\}\}^4$ around a singular point and a property of Mumford-Shah minimal sets in $\{\mathbb\{R\}\}^4$.},
author = {Luu, Tien Duc},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Almgren minimal sets; Hölder regularity; Mumford-Shah minimal sets},
language = {eng},
month = {6},
number = {3},
pages = {465-493},
publisher = {Université Paul Sabatier, Toulouse},
title = {On some properties of three-dimensional minimal sets in $\{\mathbb\{R\}\}^4$},
url = {http://eudml.org/doc/275284},
volume = {22},
year = {2013},
}

TY - JOUR
AU - Luu, Tien Duc
TI - On some properties of three-dimensional minimal sets in ${\mathbb{R}}^4$
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2013/6//
PB - Université Paul Sabatier, Toulouse
VL - 22
IS - 3
SP - 465
EP - 493
AB - We prove in this paper the Hölder regularity of Almgren minimal sets of dimension 3 in ${\mathbb{R}}^4$ around a ${\mathbb{Y}}$-point and the existence of a point of particular type of a Mumford-Shah minimal set in ${\mathbb{R}}^4$, which is very close to a ${\mathbb{T}}$. This will give a local description of minimal sets of dimension 3 in ${\mathbb{R}}^4$ around a singular point and a property of Mumford-Shah minimal sets in ${\mathbb{R}}^4$.
LA - eng
KW - Almgren minimal sets; Hölder regularity; Mumford-Shah minimal sets
UR - http://eudml.org/doc/275284
ER -

References

top
  1. . Almgren (F. J.).— Some interior regularity theorems for minimal surfaces and an extension of Bernstein’s Theorem, Ann. of Math (2), Vol. 84, p. 277-292 (1966). Zbl0146.11905MR200816
  2. . Allard (W. K.).— On the First Variation of a Varifold, Ann. of Math (2), Vol. 95, p. 417-491 (1972). Zbl0252.49028MR307015
  3. . David (G.).— Hölder regularity of two-dimensional almost-minimal sets in n , Ann. Fac. Sci. Toulouse Math, (6), 18(1) p. 65-246 (2009). Zbl1213.49051MR2518104
  4. . David (G.).— C 1 + α -regularity for two dimensional almost-minimal sets in n , Journal of Geometric Analysis, Vol 20, Number 4, p. 837-954. Zbl1225.49044MR2683770
  5. . David (G.).— Singular sets of minimizers for the Mumford-Shah functional, Progress in Mathematics 233 (581p.), Birkhäuser (2005). Zbl1086.49030MR2129693
  6. . David (G.), De Pauw (T.), and Toro (T.).— A generalization of Reifenberg’s theorem in 3 , Geom. Funct. Anal. Vol. 18, p. 1168-1235 (2008). Zbl1169.49040MR2465688
  7. . David (G.) and Semmes (S.).— Uniform rectifiability and quasiminimizing sets of arbitrary codimension, Memoirs of the A.M.S. Number 687, Vol 144 (2000). Zbl0966.49024MR1683164
  8. . Dugundji (J.).— Topology, Allyn and Bacon, Boston (1966). Zbl0397.54003MR193606
  9. . Federer (H.).— Geometric measure theory, Grundlehren der Mathematishen Wissenschaften 153, Springer Verlag (1969). Zbl0176.00801MR257325
  10. . Simons (J.).— Minimal varieties in riemannian manifolds, Ann. of Math, (2), Vol. 88, p. 62-105 (1968). Zbl0181.49702MR233295
  11. . Taylor (J.).— The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces, Ann. of Math. (2) 103, no. 3, p. 489-539 (1976). Zbl0335.49032MR428181

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.