Mesures limites pour l’équation de Helmholtz dans le cas non captif
- [1] Institut de Mathématiques de Bordeaux, UMR 5251 du CNRS, Université de Bordeaux I, 351 cours de la Libération, 33405 Talence, France
Annales de la faculté des sciences de Toulouse Mathématiques (2009)
- Volume: 18, Issue: 3, page 445-479
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topReferences
top- Benamou (J. D.), Castella (F.), Katsaounis (T.), Perthame (B.).— High frequency limit of the Helmholtz equations, Rev. Mat. Iberoamericana 18, no 1, p. 187–209 (2002). Zbl1090.35165MR1924691
- Burq (N.).— Semi-classical estimates for the resolvent in nontrapping geometries, Int. Math. Res. Not., no 5, p. 221–241 (2002). Zbl1161.81368MR1876933
- Castella (F.).— The radiation condition at infinity for the high-frequency Helmholtz equation with source term : a wave-packet approach, J. Funct. Anal. 223, no 1, p. 204–257 (2005). Zbl1072.35159MR2139886
- Castella (F.), Jecko (T.).— Besov estimates in the high-frequency Helmholtz equation, for a non-trapping and potential, J. Differential Equations 228, no 2, p. 440–485 (2006). Zbl1105.35091MR2289541
- Castella (F.), Jecko (T.), Knauf (A.).— Semiclassical resolvent estimates for Schrödinger operators with coulomb singularities, Ann. Henri Poincaré 9, n 4, p. 775–815 (2008). Zbl1162.81019MR2413203
- Castella (F.), Perthame (B.), Runborg (O.).— High frequency limit of the Helmholtz equation. II. Source on a general smooth manifold, Comm. Partial Differential Equations 27, no 3-4, p. 607–651 (2002). Zbl1290.35262MR1900556
- Dimassi (M.), Sjöstrand (J.).— Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, vol. 268, Cambridge University Press (1999). Zbl0926.35002MR1735654
- Fedoriuk (M.), Maslov (V.).— Semiclassical approximation in quantum mechanics, Mathematical Physics and Applied Mathematics, vol. 7, D. Reidel Publishing Co., Dordrecht (1981). Zbl0458.58001MR634377
- Fouassier (E.).— High frequency analysis of Helmholtz equations : case of two point sources, SIAM J. Math. Anal. 38, no 2, p. 617–636 (2006). Zbl1110.35089MR2237164
- Fouassier (E.).— High frequency limit of Helmholtz equations : refraction by sharp interfaces, J. Math. Pures Appl. (9) 87, no 2, p. 144–192 (2007). Zbl1119.35096MR2296804
- Gérard (C.).— A proof of the abstract limiting absorption principle by energy estimates, J. Funct. Anal. 254, n 11, p. 2707–2724 (2008). Zbl1141.47017MR2414218
- Gérard (C.), Martinez (A.).— Principe d’absorption limite pour des opérateurs de Schrödinger à longue portée, C. R. Acad. Sci. Paris Sér. I Math. 306, no 3, p. 121–123 (1988). Zbl0672.35013MR929103
- Gérard (C.), Martinez (A.).— Semiclassical asymptotics for the spectral function of long-range Schrödinger operators, J. Funct. Anal. 84, no 1, p. 226–254 (1989). Zbl0692.35069MR999499
- Hörmander (L.).— The analysis of linear partial differential operators. I, second ed., Grundlehren der Mathematischen Wissenschaften, vol. 256, Springer-Verlag, Distribution theory and Fourier analysis (1990). Zbl0712.35001MR1065993
- Hörmander (L.).— The analysis of linear partial differential operators. IV, Grundlehren der Mathematischen Wissenschaften, vol. 275, Springer-Verlag, Fourier integral operators, Corrected reprint of the 1985 original (1994). Zbl0612.35001MR781537
- Isozaki (H.), Kitada (H.).— Modified wave operators with time-independent modifiers, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 32, no 1, p. 77–104 (1985). Zbl0582.35036MR783182
- Isozaki (H.), Kitada (H.).— A remark on the microlocal resolvent estimates for two body Schrödinger operators, Publ. Res. Inst. Math. Sci. 21, no 5, p. 889–910 (1985). Zbl0611.35090MR817149
- Ivrii (V.).— Microlocal analysis and precise spectral asymptotics, Springer Monographs in Mathematics, Springer-Verlag (1998). Zbl0906.35003MR1631419
- Mourre (E.).— Absence of singular continuous spectrum for certain selfadjoint operators, Comm. Math. Phys. 78, no 3, p. 391–408 (1980/81). Zbl0489.47010MR603501
- Perthame (B.), Vega (L.).— Morrey-Campanato estimates for Helmholtz equations, J. Funct. Anal. 164, no 2, p. 340–355 (1999). Zbl0932.35048MR1695559
- Robert (D.).— Autour de l’approximation semi-classique, Progress in Mathematics, vol. 68, Birkhäuser Boston Inc. (1987). Zbl0621.35001MR897108
- Robert (D.), Tamura (H.).— Semiclassical estimates for resolvents and asymptotics for total scattering cross-sections, Ann. Inst. H. Poincaré Phys. Théor. 46, no 4, p. 415–442 (1987). Zbl0648.35066MR912158
- Robert (D.), Tamura (H.).— Semi-classical asymptotics for local spectral densities and time delay problems in scattering processes, J. Funct. Anal. 80, no 1, p. 124–147 (1988). Zbl0663.47009MR960227
- Robert (D.), Tamura (H.).— Asymptotic behavior of scattering amplitudes in semi-classical and low energy limits, Ann. Inst. Fourier 39, no 1, p. 155–192 (1989). Zbl0659.35026MR1011982
- Wang (X. P.).— Microlocal estimates of the Schrödinger equation in semi-classical limit, Partial differential equations and applications, Sémin. congr., vol. 15 Math. France, p. 265–308, (2007). Zbl1132.35425MR2385136
- Wang (X. P.), Zhang (P.).— High-frequency limit of the Helmholtz equation with variable refraction index, J. Funct. Anal. 230, no 1, p.116–168 (2006). Zbl1141.35016MR2184186