Mesures limites pour l’équation de Helmholtz dans le cas non captif

Jean-François Bony[1]

  • [1] Institut de Mathématiques de Bordeaux, UMR 5251 du CNRS, Université de Bordeaux I, 351 cours de la Libération, 33405 Talence, France

Annales de la faculté des sciences de Toulouse Mathématiques (2009)

  • Volume: 18, Issue: 3, page 445-479
  • ISSN: 0240-2963

Abstract

top
This paper is devoted to the study of the limit measures associated with the solution of the Helmholtz equation with a source term which concentrates on a point. The potential is assumed to be C and the operator non trapping. The solution of the semi-classical Schrödinger equation is written micro-locally as a finite sum of Lagrangian distributions. Under a geometrical hypothesis, which generalizes the virial assumption, this representation implies that the limit measure exists and satisfies standard properties. Finally, one gives an example of operator which does not satisfy the geometrical hypothesis and for which the limit measure is not unique. The case of two source terms is also treated

How to cite

top

Bony, Jean-François. "Mesures limites pour l’équation de Helmholtz dans le cas non captif." Annales de la faculté des sciences de Toulouse Mathématiques 18.3 (2009): 445-479. <http://eudml.org/doc/10113>.

@article{Bony2009,
abstract = {Cet article est consacré à l’étude des mesures limites associées à la solution de l’équation de Helmholtz avec un terme source se concentrant en un point. Le potentiel est supposé $C^\{\infty \}$ et l’opérateur non-captif. La solution de l’équation de Schrödinger semi-classique s’écrit alors micro-localement comme somme finie de distributions lagrangiennes. Sous une hypothèse géométrique, qui généralise l’hypothèse du viriel, on en déduit que la mesure limite existe et qu’elle vérifie des propriétés standard. Enfin, on donne un exemple d’opérateur qui ne vérifie pas l’hypothèse géométrique et pour lequel la mesure limite n’est pas unique. Le cas de deux termes sources est aussi traité.},
affiliation = {Institut de Mathématiques de Bordeaux, UMR 5251 du CNRS, Université de Bordeaux I, 351 cours de la Libération, 33405 Talence, France},
author = {Bony, Jean-François},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Helmholtz equation; Schrödinger equation; limit measures},
language = {fre},
month = {7},
number = {3},
pages = {445-479},
publisher = {Université Paul Sabatier, Toulouse},
title = {Mesures limites pour l’équation de Helmholtz dans le cas non captif},
url = {http://eudml.org/doc/10113},
volume = {18},
year = {2009},
}

TY - JOUR
AU - Bony, Jean-François
TI - Mesures limites pour l’équation de Helmholtz dans le cas non captif
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2009/7//
PB - Université Paul Sabatier, Toulouse
VL - 18
IS - 3
SP - 445
EP - 479
AB - Cet article est consacré à l’étude des mesures limites associées à la solution de l’équation de Helmholtz avec un terme source se concentrant en un point. Le potentiel est supposé $C^{\infty }$ et l’opérateur non-captif. La solution de l’équation de Schrödinger semi-classique s’écrit alors micro-localement comme somme finie de distributions lagrangiennes. Sous une hypothèse géométrique, qui généralise l’hypothèse du viriel, on en déduit que la mesure limite existe et qu’elle vérifie des propriétés standard. Enfin, on donne un exemple d’opérateur qui ne vérifie pas l’hypothèse géométrique et pour lequel la mesure limite n’est pas unique. Le cas de deux termes sources est aussi traité.
LA - fre
KW - Helmholtz equation; Schrödinger equation; limit measures
UR - http://eudml.org/doc/10113
ER -

References

top
  1. Benamou (J. D.), Castella (F.), Katsaounis (T.), Perthame (B.).— High frequency limit of the Helmholtz equations, Rev. Mat. Iberoamericana 18, no 1, p. 187–209 (2002). Zbl1090.35165MR1924691
  2. Burq (N.).— Semi-classical estimates for the resolvent in nontrapping geometries, Int. Math. Res. Not., no 5, p. 221–241 (2002). Zbl1161.81368MR1876933
  3. Castella (F.).— The radiation condition at infinity for the high-frequency Helmholtz equation with source term : a wave-packet approach, J. Funct. Anal. 223, no 1, p. 204–257 (2005). Zbl1072.35159MR2139886
  4. Castella (F.), Jecko (T.).— Besov estimates in the high-frequency Helmholtz equation, for a non-trapping and C 2 potential, J. Differential Equations 228, no 2, p. 440–485 (2006). Zbl1105.35091MR2289541
  5. Castella (F.), Jecko (T.), Knauf (A.).— Semiclassical resolvent estimates for Schrödinger operators with coulomb singularities, Ann. Henri Poincaré 9, n 4, p. 775–815 (2008). Zbl1162.81019MR2413203
  6. Castella (F.), Perthame (B.), Runborg (O.).— High frequency limit of the Helmholtz equation. II. Source on a general smooth manifold, Comm. Partial Differential Equations 27, no 3-4, p. 607–651 (2002). Zbl1290.35262MR1900556
  7. Dimassi (M.), Sjöstrand (J.).— Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, vol. 268, Cambridge University Press (1999). Zbl0926.35002MR1735654
  8. Fedoriuk (M.), Maslov (V.).— Semiclassical approximation in quantum mechanics, Mathematical Physics and Applied Mathematics, vol. 7, D. Reidel Publishing Co., Dordrecht (1981). Zbl0458.58001MR634377
  9. Fouassier (E.).— High frequency analysis of Helmholtz equations : case of two point sources, SIAM J. Math. Anal. 38, no 2, p. 617–636 (2006). Zbl1110.35089MR2237164
  10. Fouassier (E.).— High frequency limit of Helmholtz equations : refraction by sharp interfaces, J. Math. Pures Appl. (9) 87, no 2, p. 144–192 (2007). Zbl1119.35096MR2296804
  11. Gérard (C.).— A proof of the abstract limiting absorption principle by energy estimates, J. Funct. Anal. 254, n 11, p. 2707–2724 (2008). Zbl1141.47017MR2414218
  12.  Gérard (C.), Martinez (A.).— Principe d’absorption limite pour des opérateurs de Schrödinger à longue portée, C. R. Acad. Sci. Paris Sér. I Math. 306, no 3, p. 121–123 (1988). Zbl0672.35013MR929103
  13. Gérard (C.), Martinez (A.).— Semiclassical asymptotics for the spectral function of long-range Schrödinger operators, J. Funct. Anal. 84, no 1, p. 226–254 (1989). Zbl0692.35069MR999499
  14. Hörmander (L.).— The analysis of linear partial differential operators. I, second ed., Grundlehren der Mathematischen Wissenschaften, vol. 256, Springer-Verlag, Distribution theory and Fourier analysis (1990). Zbl0712.35001MR1065993
  15. Hörmander (L.).— The analysis of linear partial differential operators. IV, Grundlehren der Mathematischen Wissenschaften, vol. 275, Springer-Verlag, Fourier integral operators, Corrected reprint of the 1985 original (1994). Zbl0612.35001MR781537
  16. Isozaki (H.), Kitada (H.).— Modified wave operators with time-independent modifiers, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 32, no 1, p. 77–104 (1985). Zbl0582.35036MR783182
  17. Isozaki (H.), Kitada (H.).— A remark on the microlocal resolvent estimates for two body Schrödinger operators, Publ. Res. Inst. Math. Sci. 21, no 5, p. 889–910 (1985). Zbl0611.35090MR817149
  18. Ivrii (V.).— Microlocal analysis and precise spectral asymptotics, Springer Monographs in Mathematics, Springer-Verlag (1998). Zbl0906.35003MR1631419
  19. Mourre (E.).— Absence of singular continuous spectrum for certain selfadjoint operators, Comm. Math. Phys. 78, no 3, p. 391–408 (1980/81). Zbl0489.47010MR603501
  20. Perthame (B.), Vega (L.).— Morrey-Campanato estimates for Helmholtz equations, J. Funct. Anal. 164, no 2, p. 340–355 (1999). Zbl0932.35048MR1695559
  21. Robert (D.).— Autour de l’approximation semi-classique, Progress in Mathematics, vol. 68, Birkhäuser Boston Inc. (1987). Zbl0621.35001MR897108
  22. Robert (D.), Tamura (H.).— Semiclassical estimates for resolvents and asymptotics for total scattering cross-sections, Ann. Inst. H. Poincaré Phys. Théor. 46, no 4, p. 415–442 (1987). Zbl0648.35066MR912158
  23. Robert (D.), Tamura (H.).— Semi-classical asymptotics for local spectral densities and time delay problems in scattering processes, J. Funct. Anal. 80, no 1, p. 124–147 (1988). Zbl0663.47009MR960227
  24. Robert (D.), Tamura (H.).— Asymptotic behavior of scattering amplitudes in semi-classical and low energy limits, Ann. Inst. Fourier 39, no 1, p. 155–192 (1989). Zbl0659.35026MR1011982
  25. Wang (X. P.).— Microlocal estimates of the Schrödinger equation in semi-classical limit, Partial differential equations and applications, Sémin. congr., vol. 15 Math. France, p. 265–308, (2007). Zbl1132.35425MR2385136
  26. Wang (X. P.), Zhang (P.).— High-frequency limit of the Helmholtz equation with variable refraction index, J. Funct. Anal. 230, no 1, p.116–168 (2006). Zbl1141.35016MR2184186

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.