Asymptotic behavior of scattering amplitudes in semi-classical and low energy limits

Didier Robert; H. Tamura

Annales de l'institut Fourier (1989)

  • Volume: 39, Issue: 1, page 155-192
  • ISSN: 0373-0956

Abstract

top
We study the semi-classical asymptotic behavior as ( h 0 ) of scattering amplitudes for Schrödinger operators - ( 1 / 2 ) h 2 Δ + V . The asymptotic formula is obtained for energies fixed in a non-trapping energy range and also is applied to study the low energy behavior of scattering amplitudes for a certain class of slowly decreasing repulsive potentials without spherical symmetry.

How to cite

top

Robert, Didier, and Tamura, H.. "Asymptotic behavior of scattering amplitudes in semi-classical and low energy limits." Annales de l'institut Fourier 39.1 (1989): 155-192. <http://eudml.org/doc/74822>.

@article{Robert1989,
abstract = {We study the semi-classical asymptotic behavior as $(h\rightarrow 0)$ of scattering amplitudes for Schrödinger operators $-(1/2)h^2\Delta +V$. The asymptotic formula is obtained for energies fixed in a non-trapping energy range and also is applied to study the low energy behavior of scattering amplitudes for a certain class of slowly decreasing repulsive potentials without spherical symmetry.},
author = {Robert, Didier, Tamura, H.},
journal = {Annales de l'institut Fourier},
keywords = {semi-classical asymptotic behavior; scattering amplitudes; Schrödinger operators; non-trapping energy range; low energy behavior},
language = {eng},
number = {1},
pages = {155-192},
publisher = {Association des Annales de l'Institut Fourier},
title = {Asymptotic behavior of scattering amplitudes in semi-classical and low energy limits},
url = {http://eudml.org/doc/74822},
volume = {39},
year = {1989},
}

TY - JOUR
AU - Robert, Didier
AU - Tamura, H.
TI - Asymptotic behavior of scattering amplitudes in semi-classical and low energy limits
JO - Annales de l'institut Fourier
PY - 1989
PB - Association des Annales de l'Institut Fourier
VL - 39
IS - 1
SP - 155
EP - 192
AB - We study the semi-classical asymptotic behavior as $(h\rightarrow 0)$ of scattering amplitudes for Schrödinger operators $-(1/2)h^2\Delta +V$. The asymptotic formula is obtained for energies fixed in a non-trapping energy range and also is applied to study the low energy behavior of scattering amplitudes for a certain class of slowly decreasing repulsive potentials without spherical symmetry.
LA - eng
KW - semi-classical asymptotic behavior; scattering amplitudes; Schrödinger operators; non-trapping energy range; low energy behavior
UR - http://eudml.org/doc/74822
ER -

References

top
  1. [1] S. AGMON, Spectral properties of Schrödinger operators and scattering theory, Ann. Norm. Sup. Pisa, 2 (1975), 151-218. Zbl0315.47007MR53 #1053
  2. [2] S. AGMON, Some new results in spectral and scattering theory of differential operators on Rn, Séminaire Goulaouic-Schwartz, École Polytechnique, 1978. Zbl0406.35052
  3. [3] S. ALBEVERIO, F. GESZTESY and R. HɸEGH-KROHN, The low energy expansion in nonrelativistic scattering theory, Ann. Inst. Henri Poincaré, 37 (1982), 1-28. Zbl0528.35076MR83k:81093
  4. [4] S. ALBEVERIO, D. BOLLÉF. GESZTESYR. HɸEGH-KROHN and L. STREIT, Low-energy parameters in nonrelativistic scattering theory, Ann. Phys., 148 (1983), 308-326. Zbl0542.35056MR84j:81108
  5. [5] V. ENSS and B. SIMON, Finite total cross sections in nonrelativistic quantum mechanics, Comm. Math. Phys., 76 (1980), 177-209. Zbl0471.35065MR84k:81112
  6. [6] V. ENSS and B. SIMON, Total cross sections in nonrelativistic scattering theory, Quantum Mechanics in Mathematics, Chemistry and Physics, edited by K.E. Gustafson and W. P. Reinhart, Plenum Press, 1981. Zbl0471.35065
  7. [7] C. GÉRARD and A. MARTINEZ, Principe d'absorption limite pour des opérateurs de Schrödinger à longue portée, Université de Paris-Sud, preprint, 1987. Zbl0672.35013
  8. [8] H. ISOZAKI and H. KITADAModified wave operators with time-independent modifiers, J. Fac. Sci. Univ. Tokyo Sect. IA, 32 (1985), 77-104. Zbl0582.35036MR86j:35125
  9. [9] H. ISOZAKI and H. KITADA, Scattering matrices for two-body Schrödinger operators, Sci. Papers College Arts Sci. Univ. Tokyo, 35 (1985), 81-107. Zbl0615.35065MR87k:35196
  10. [10] H. ISOZAKI and H. KITADA, A remark on the microlocal resolvent estimates for two-body Schrödinger operators, Publ. RIMS Kyoto Univ., 21 (1985), 889-910. Zbl0611.35090MR87f:35193
  11. [11] A. A. KVITSINSKII, Scattering by long-range potentials at low energies, Theoretical and Mathematical Physics, 59 (1984), 629-633. 
  12. [12] V. P. MASLOV and M. V. FEDORIUK, Semi-classical Approximation in Quantum Mechanics, Reidel, 1981. Zbl0458.58001MR84k:58226
  13. [13] Yu. N. PROTAS, Quasiclassical asymptotics of the scattering amplitude for the scattering of a plane wave by inhomogeneities of the medium, Math. USSR Sbornik, 45 (1983), 487-506. Zbl0549.35101
  14. [14] D. ROBERT, Autour de l'approximation Semi-classique, Birkhaüser, 1987. Zbl0621.35001MR89g:81016
  15. [15] D. ROBERT and H. TAMURA, Semi-classical estimates for resolvents and asymptotics for total scattering cross-sections, Ann. Inst. Henri Poincaré, 46 (1987), 415-442. Zbl0648.35066MR89b:81041
  16. [16] B. R. VAINGERG, Quasi-classical approximation in stationary scattering problems, Func. Anal. Appl., 11 (1977), 247-257. Zbl0413.35025
  17. [17] X. P. WANG, Time-decay of scattering solutions and resolvent estimates for semi-classical Schrödinger operators, Université de Nantes, preprint, 1986. 
  18. [18] K. YAJIMA, The quasi-classical limit of scattering amplitude — L2 — approach for short range potentials — Japan J. Math., 13 (1987), 77-126. Zbl0648.35067MR88i:35129
  19. [19] M. REED and B. SIMON, Methods of Modern Mathematical Physics, III: Scattering Theory, Academic Press, 1979. Zbl0405.47007MR80m:81085
  20. [20] R. G. NEWTON, Scattering Theory of Waves and Particles, 2nd édition, Springer, 1982. Zbl0496.47011MR84f:81001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.