Asymptotic behavior of scattering amplitudes in semi-classical and low energy limits
Annales de l'institut Fourier (1989)
- Volume: 39, Issue: 1, page 155-192
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topRobert, Didier, and Tamura, H.. "Asymptotic behavior of scattering amplitudes in semi-classical and low energy limits." Annales de l'institut Fourier 39.1 (1989): 155-192. <http://eudml.org/doc/74822>.
@article{Robert1989,
abstract = {We study the semi-classical asymptotic behavior as $(h\rightarrow 0)$ of scattering amplitudes for Schrödinger operators $-(1/2)h^2\Delta +V$. The asymptotic formula is obtained for energies fixed in a non-trapping energy range and also is applied to study the low energy behavior of scattering amplitudes for a certain class of slowly decreasing repulsive potentials without spherical symmetry.},
author = {Robert, Didier, Tamura, H.},
journal = {Annales de l'institut Fourier},
keywords = {semi-classical asymptotic behavior; scattering amplitudes; Schrödinger operators; non-trapping energy range; low energy behavior},
language = {eng},
number = {1},
pages = {155-192},
publisher = {Association des Annales de l'Institut Fourier},
title = {Asymptotic behavior of scattering amplitudes in semi-classical and low energy limits},
url = {http://eudml.org/doc/74822},
volume = {39},
year = {1989},
}
TY - JOUR
AU - Robert, Didier
AU - Tamura, H.
TI - Asymptotic behavior of scattering amplitudes in semi-classical and low energy limits
JO - Annales de l'institut Fourier
PY - 1989
PB - Association des Annales de l'Institut Fourier
VL - 39
IS - 1
SP - 155
EP - 192
AB - We study the semi-classical asymptotic behavior as $(h\rightarrow 0)$ of scattering amplitudes for Schrödinger operators $-(1/2)h^2\Delta +V$. The asymptotic formula is obtained for energies fixed in a non-trapping energy range and also is applied to study the low energy behavior of scattering amplitudes for a certain class of slowly decreasing repulsive potentials without spherical symmetry.
LA - eng
KW - semi-classical asymptotic behavior; scattering amplitudes; Schrödinger operators; non-trapping energy range; low energy behavior
UR - http://eudml.org/doc/74822
ER -
References
top- [1] S. AGMON, Spectral properties of Schrödinger operators and scattering theory, Ann. Norm. Sup. Pisa, 2 (1975), 151-218. Zbl0315.47007MR53 #1053
- [2] S. AGMON, Some new results in spectral and scattering theory of differential operators on Rn, Séminaire Goulaouic-Schwartz, École Polytechnique, 1978. Zbl0406.35052
- [3] S. ALBEVERIO, F. GESZTESY and R. HɸEGH-KROHN, The low energy expansion in nonrelativistic scattering theory, Ann. Inst. Henri Poincaré, 37 (1982), 1-28. Zbl0528.35076MR83k:81093
- [4] S. ALBEVERIO, D. BOLLÉF. GESZTESYR. HɸEGH-KROHN and L. STREIT, Low-energy parameters in nonrelativistic scattering theory, Ann. Phys., 148 (1983), 308-326. Zbl0542.35056MR84j:81108
- [5] V. ENSS and B. SIMON, Finite total cross sections in nonrelativistic quantum mechanics, Comm. Math. Phys., 76 (1980), 177-209. Zbl0471.35065MR84k:81112
- [6] V. ENSS and B. SIMON, Total cross sections in nonrelativistic scattering theory, Quantum Mechanics in Mathematics, Chemistry and Physics, edited by K.E. Gustafson and W. P. Reinhart, Plenum Press, 1981. Zbl0471.35065
- [7] C. GÉRARD and A. MARTINEZ, Principe d'absorption limite pour des opérateurs de Schrödinger à longue portée, Université de Paris-Sud, preprint, 1987. Zbl0672.35013
- [8] H. ISOZAKI and H. KITADAModified wave operators with time-independent modifiers, J. Fac. Sci. Univ. Tokyo Sect. IA, 32 (1985), 77-104. Zbl0582.35036MR86j:35125
- [9] H. ISOZAKI and H. KITADA, Scattering matrices for two-body Schrödinger operators, Sci. Papers College Arts Sci. Univ. Tokyo, 35 (1985), 81-107. Zbl0615.35065MR87k:35196
- [10] H. ISOZAKI and H. KITADA, A remark on the microlocal resolvent estimates for two-body Schrödinger operators, Publ. RIMS Kyoto Univ., 21 (1985), 889-910. Zbl0611.35090MR87f:35193
- [11] A. A. KVITSINSKII, Scattering by long-range potentials at low energies, Theoretical and Mathematical Physics, 59 (1984), 629-633.
- [12] V. P. MASLOV and M. V. FEDORIUK, Semi-classical Approximation in Quantum Mechanics, Reidel, 1981. Zbl0458.58001MR84k:58226
- [13] Yu. N. PROTAS, Quasiclassical asymptotics of the scattering amplitude for the scattering of a plane wave by inhomogeneities of the medium, Math. USSR Sbornik, 45 (1983), 487-506. Zbl0549.35101
- [14] D. ROBERT, Autour de l'approximation Semi-classique, Birkhaüser, 1987. Zbl0621.35001MR89g:81016
- [15] D. ROBERT and H. TAMURA, Semi-classical estimates for resolvents and asymptotics for total scattering cross-sections, Ann. Inst. Henri Poincaré, 46 (1987), 415-442. Zbl0648.35066MR89b:81041
- [16] B. R. VAINGERG, Quasi-classical approximation in stationary scattering problems, Func. Anal. Appl., 11 (1977), 247-257. Zbl0413.35025
- [17] X. P. WANG, Time-decay of scattering solutions and resolvent estimates for semi-classical Schrödinger operators, Université de Nantes, preprint, 1986.
- [18] K. YAJIMA, The quasi-classical limit of scattering amplitude — L2 — approach for short range potentials — Japan J. Math., 13 (1987), 77-126. Zbl0648.35067MR88i:35129
- [19] M. REED and B. SIMON, Methods of Modern Mathematical Physics, III: Scattering Theory, Academic Press, 1979. Zbl0405.47007MR80m:81085
- [20] R. G. NEWTON, Scattering Theory of Waves and Particles, 2nd édition, Springer, 1982. Zbl0496.47011MR84f:81001
Citations in EuDML Documents
top- Hideo Tamura, Shadow scattering by magnetic fields in two dimensions
- Laurent Michel, Scattering amplitude for the Schrödinger equation with strong magnetic field
- Antônio Sá Barreto, Jared Wunsch, The radiation field is a Fourier integral operator
- Jean-François Bony, Mesures limites pour l’équation de Helmholtz dans le cas non captif
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.