Some addition to the generalized Riemann-Hilbert problem
R.R. Gontsov[1]; I.V. Vyugin[1]
- [1] Institute for Information Transmission Problems, Moscow, Russia
Annales de la faculté des sciences de Toulouse Mathématiques (2009)
- Volume: 18, Issue: 3, page 561-576
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topGontsov, R.R., and Vyugin, I.V.. "Some addition to the generalized Riemann-Hilbert problem." Annales de la faculté des sciences de Toulouse Mathématiques 18.3 (2009): 561-576. <http://eudml.org/doc/10117>.
@article{Gontsov2009,
abstract = {We consider the generalized Riemann-Hilbert problem for linear differential equations with irregular singularities. If one weakens the conditions by allowing one of the Poincaré ranks to be non-minimal, the problem is known to have a solution. In this article we give a bound for the possibly non-minimal Poincaré rank. We also give a bound for the number of apparent singularities of a scalar equation with prescribed generalized monodromy data.},
affiliation = {Institute for Information Transmission Problems, Moscow, Russia; Institute for Information Transmission Problems, Moscow, Russia},
author = {Gontsov, R.R., Vyugin, I.V.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {monodromy; irregular singularity; Poincaré rank; generalized Riemann-Hilbert problem; holomorphic vector bundle},
language = {eng},
month = {7},
number = {3},
pages = {561-576},
publisher = {Université Paul Sabatier, Toulouse},
title = {Some addition to the generalized Riemann-Hilbert problem},
url = {http://eudml.org/doc/10117},
volume = {18},
year = {2009},
}
TY - JOUR
AU - Gontsov, R.R.
AU - Vyugin, I.V.
TI - Some addition to the generalized Riemann-Hilbert problem
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2009/7//
PB - Université Paul Sabatier, Toulouse
VL - 18
IS - 3
SP - 561
EP - 576
AB - We consider the generalized Riemann-Hilbert problem for linear differential equations with irregular singularities. If one weakens the conditions by allowing one of the Poincaré ranks to be non-minimal, the problem is known to have a solution. In this article we give a bound for the possibly non-minimal Poincaré rank. We also give a bound for the number of apparent singularities of a scalar equation with prescribed generalized monodromy data.
LA - eng
KW - monodromy; irregular singularity; Poincaré rank; generalized Riemann-Hilbert problem; holomorphic vector bundle
UR - http://eudml.org/doc/10117
ER -
References
top- Anosov (D. V.) and Bolibruch (A. A.).— The Riemann-Hilbert problem. Aspects Math. E 22, Friedr. Vieweg & Sohn, Braunschweig, (1994). Zbl0801.34002MR1276272
- Balser (W.).— Birkhoff’s reduction problem. Russian Math. Surveys59:6, p. 1047-1059 (2004). Zbl1077.34001MR2138466
- Balser (W.), Jurkat (W. B.), Lutz (D. A.).— A general theory of invariants for meromorphic differential equations. I. Formal invariants. Funk. Ekvac.22:2, p. 197-221 (1979). Zbl0434.34002MR556577
- Balser (W.), Jurkat (W. B.), Lutz (D. A.).— Invariants for redicible systems of meromorphic differential equations. Proc. Edinburgh Math. Soc.23:2, p. 163-186 (1980). Zbl0446.34007MR597121
- Bolibruch (A. A.).— Vector bundles associated with monodromies and asymptotics of Fuchsian systems. J. Dynam. Control Systems1:2, p. 229-252 (1995). Zbl0943.34079MR1333772
- Bolibruch (A. A.), Malek (S.), Mitschi (C.).— On the generalized Riemann-Hilbert problem with irregular singularities. Exposition. Math.24, p. 235-272 (2006). Zbl1106.34061MR2250948
- Deligne (P.).— Equations différentielles à points singuliers réguliers. Lecture Notes in Math.163, Springer-Verlag, Berlin, (1970). Zbl0244.14004MR417174
- Forster (O.).— Riemannsche Flachen. Springer-Verlag, Berlin, (1980). Zbl0381.30021MR447557
- Hartman (P.).— Ordinary differential equations. Wiley, New York, (1964). Zbl0125.32102MR171038
- Lutz (D. A.), Schäfke (R.).— On the identification and stability of formal invariants for singular differential equations. Linear Algebra Appl.72, p. 1-46 (1985). Zbl0577.34029MR815250
- V’yugin (I. V.), Gontsov (R. R.).— Additional parameters in inverse monodromy problems. Sbornik: Mathematics197:12, p. 1753-1773 (2006). Zbl1159.34059MR2437080
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.