Algebraic solutions of the Lamé equation
In this paper we give a summary of joint work with Alexa van der Waall concerning Lamé equations having finite monodromy. This research is the subject of van der Waall's Ph. D. thesis [W].
In this paper we give a summary of joint work with Alexa van der Waall concerning Lamé equations having finite monodromy. This research is the subject of van der Waall's Ph. D. thesis [W].
The aim of this paper is to construct the analytic vector fields with given as trajectories or solutions. In particular we construct the polynomial vector field from given conics (ellipses, hyperbola, parabola, straight lines) and determine the differential equations from a finite number of solutions.
On démontre ici un lemme de Hensel pour les opérateurs différentiels. On en déduit un théorème de factorisation pour des opérateurs différentiels à coefficients dans une extension liouvillienne transcendante d’un corps valué. On obtient en particulier un théorème de factorisation pour des opérateurs différentiels à coefficients dans une extension de par un nombre fini d’exponentielles et de logarithmes algébriquement indépendants sur .
Dans cet article on s’intéresse à la représentation adjointe du tore exponentiel sur l’algèbre de Lie du groupe de Galois différentiel local. Nous proposons un algorithme pour réduire les sous-espaces poids de dimension supérieure à 1 à des sous-espaces de racines. Ce faisant, on construit un tore (en général) maximal qui contient le tore exponentiel. Au cours de ce travail on est amené à étudier la régularité du tore exponentiel dans le groupe de Galois local.
We consider the generalized Riemann-Hilbert problem for linear differential equations with irregular singularities. If one weakens the conditions by allowing one of the Poincaré ranks to be non-minimal, the problem is known to have a solution. In this article we give a bound for the possibly non-minimal Poincaré rank. We also give a bound for the number of apparent singularities of a scalar equation with prescribed generalized monodromy data.
Nous définissons une représentation des groupes d’Artin de type par monodromie de systèmes KZ généralisés, dont nous montrons qu’elle est isomorphe à la représentation de Krammer généralisée définie originellement par A.M.Cohen et D.Wales, et indépendamment par F.Digne. Cela implique que tous les groupes d’Artin purs de type sphérique sont résiduellement nilpotents-sans-torsion, donc (bi-)ordonnables. En utilisant cette construction nous montrons que ces représentations irréductibles sont Zariski-denses...