Moduli of Germs of Legendrian Curves

António Araújo[1]; Orlando Neto[1]

  • [1] CMAF, Universidade de Lisboa, Av. Gama Pinto, 2 1649, Lisboa Portugal

Annales de la faculté des sciences de Toulouse Mathématiques (2009)

  • Volume: 18, Issue: 4, page 797-809
  • ISSN: 0240-2963

Abstract

top
We construct the generic component of the moduli space of the germs of Legendrian curves with generic plane projection topologically equivalent to a curve .

How to cite

top

Araújo, António, and Neto, Orlando. "Moduli of Germs of Legendrian Curves." Annales de la faculté des sciences de Toulouse Mathématiques 18.4 (2009): 797-809. <http://eudml.org/doc/10127>.

@article{Araújo2009,
abstract = {We construct the generic component of the moduli space of the germs of Legendrian curves with generic plane projection topologically equivalent to a curve $y^n=x^m$.},
affiliation = {CMAF, Universidade de Lisboa, Av. Gama Pinto, 2 1649, Lisboa Portugal; CMAF, Universidade de Lisboa, Av. Gama Pinto, 2 1649, Lisboa Portugal},
author = {Araújo, António, Neto, Orlando},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {singularities of curves; moduli space; Legendrian curve},
language = {eng},
month = {10},
number = {4},
pages = {797-809},
publisher = {Université Paul Sabatier, Toulouse},
title = {Moduli of Germs of Legendrian Curves},
url = {http://eudml.org/doc/10127},
volume = {18},
year = {2009},
}

TY - JOUR
AU - Araújo, António
AU - Neto, Orlando
TI - Moduli of Germs of Legendrian Curves
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2009/10//
PB - Université Paul Sabatier, Toulouse
VL - 18
IS - 4
SP - 797
EP - 809
AB - We construct the generic component of the moduli space of the germs of Legendrian curves with generic plane projection topologically equivalent to a curve $y^n=x^m$.
LA - eng
KW - singularities of curves; moduli space; Legendrian curve
UR - http://eudml.org/doc/10127
ER -

References

top
  1. Arnold (V.I.).— First steps in local contact algebra, Can. J. Math. 51, No.6, p. 1123-1134 (1999). Zbl1031.53110MR1756874
  2. Delorme (C.).— Sur les modules des singularités des courbes planes, Bull. Soc. Math. France 106, p. 417-446 (1978). Zbl0395.14010MR518047
  3. Greuel (G.-M.) and Pfister (G.).— Moduli for singularities. J.-P. Brasselet (ed.), Singularities, Lond. Math. Soc. Lect. Note Ser. 201, p. 119-146 (1994). Zbl0823.14001MR1295074
  4. Kashiwara (M.) and Kawai (T.).— On holonomic systems of microdifferential equations. III: Systems with regular singularities. Publ. Res. Inst. Math. Sci. 17, p. 813-979 (1981). Zbl0505.58033MR650216
  5. Kashiwara (M.).— Systems of microdifferential equations. Progress in Mathematics, 34. Birkhauser. Zbl0521.58057MR725502
  6. Neto (O.).— Equisingularity and Legendrian curves, Bull. London Math. Soc. 33, p. 527-534 (2001). Zbl1032.58028MR1844549
  7. Peraire (R.).— Moduli of plane curve singularities with a single characteristic exponent, Proc. Am. Math. Soc. 126, No.1, p. 25-34 (1998). Zbl0909.14015MR1459145
  8. Zariski (O.).— Le problème des modules pour les branches planes. Hermann (1970). Zbl0592.14010MR861277

NotesEmbed ?

top

You must be logged in to post comments.