Moduli of Germs of Legendrian Curves

António Araújo[1]; Orlando Neto[1]

  • [1] CMAF, Universidade de Lisboa, Av. Gama Pinto, 2 1649, Lisboa Portugal

Annales de la faculté des sciences de Toulouse Mathématiques (2009)

  • Volume: 18, Issue: 4, page 797-809
  • ISSN: 0240-2963

Abstract

top
We construct the generic component of the moduli space of the germs of Legendrian curves with generic plane projection topologically equivalent to a curve y n = x m .

How to cite

top

Araújo, António, and Neto, Orlando. "Moduli of Germs of Legendrian Curves." Annales de la faculté des sciences de Toulouse Mathématiques 18.4 (2009): 797-809. <http://eudml.org/doc/10127>.

@article{Araújo2009,
abstract = {We construct the generic component of the moduli space of the germs of Legendrian curves with generic plane projection topologically equivalent to a curve $y^n=x^m$.},
affiliation = {CMAF, Universidade de Lisboa, Av. Gama Pinto, 2 1649, Lisboa Portugal; CMAF, Universidade de Lisboa, Av. Gama Pinto, 2 1649, Lisboa Portugal},
author = {Araújo, António, Neto, Orlando},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {singularities of curves; moduli space; Legendrian curve},
language = {eng},
month = {10},
number = {4},
pages = {797-809},
publisher = {Université Paul Sabatier, Toulouse},
title = {Moduli of Germs of Legendrian Curves},
url = {http://eudml.org/doc/10127},
volume = {18},
year = {2009},
}

TY - JOUR
AU - Araújo, António
AU - Neto, Orlando
TI - Moduli of Germs of Legendrian Curves
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2009/10//
PB - Université Paul Sabatier, Toulouse
VL - 18
IS - 4
SP - 797
EP - 809
AB - We construct the generic component of the moduli space of the germs of Legendrian curves with generic plane projection topologically equivalent to a curve $y^n=x^m$.
LA - eng
KW - singularities of curves; moduli space; Legendrian curve
UR - http://eudml.org/doc/10127
ER -

References

top
  1. Arnold (V.I.).— First steps in local contact algebra, Can. J. Math. 51, No.6, p. 1123-1134 (1999). Zbl1031.53110MR1756874
  2. Delorme (C.).— Sur les modules des singularités des courbes planes, Bull. Soc. Math. France 106, p. 417-446 (1978). Zbl0395.14010MR518047
  3. Greuel (G.-M.) and Pfister (G.).— Moduli for singularities. J.-P. Brasselet (ed.), Singularities, Lond. Math. Soc. Lect. Note Ser. 201, p. 119-146 (1994). Zbl0823.14001MR1295074
  4. Kashiwara (M.) and Kawai (T.).— On holonomic systems of microdifferential equations. III: Systems with regular singularities. Publ. Res. Inst. Math. Sci. 17, p. 813-979 (1981). Zbl0505.58033MR650216
  5. Kashiwara (M.).— Systems of microdifferential equations. Progress in Mathematics, 34. Birkhauser. Zbl0521.58057MR725502
  6. Neto (O.).— Equisingularity and Legendrian curves, Bull. London Math. Soc. 33, p. 527-534 (2001). Zbl1032.58028MR1844549
  7. Peraire (R.).— Moduli of plane curve singularities with a single characteristic exponent, Proc. Am. Math. Soc. 126, No.1, p. 25-34 (1998). Zbl0909.14015MR1459145
  8. Zariski (O.).— Le problème des modules pour les branches planes. Hermann (1970). Zbl0592.14010MR861277

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.