The Way to the Proof of Fermat’s Last Theorem
Gerhard Frey[1]
- [1] Institute for Experimental Mathematics, University of Duisburg-Essen, Ellernstrasse 29, D-45326 Essen, Germany
Annales de la faculté des sciences de Toulouse Mathématiques (2009)
- Volume: 18, Issue: S2, page 5-23
- ISSN: 0240-2963
Access Full Article
topHow to cite
topFrey, Gerhard. "The Way to the Proof of Fermat’s Last Theorem." Annales de la faculté des sciences de Toulouse Mathématiques 18.S2 (2009): 5-23. <http://eudml.org/doc/10133>.
@article{Frey2009,
affiliation = {Institute for Experimental Mathematics, University of Duisburg-Essen, Ellernstrasse 29, D-45326 Essen, Germany},
author = {Frey, Gerhard},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Fermat's Last Theorem; elliptic curves; Galois representations},
language = {eng},
month = {4},
number = {S2},
pages = {5-23},
publisher = {Université Paul Sabatier, Toulouse},
title = {The Way to the Proof of Fermat’s Last Theorem},
url = {http://eudml.org/doc/10133},
volume = {18},
year = {2009},
}
TY - JOUR
AU - Frey, Gerhard
TI - The Way to the Proof of Fermat’s Last Theorem
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2009/4//
PB - Université Paul Sabatier, Toulouse
VL - 18
IS - S2
SP - 5
EP - 23
LA - eng
KW - Fermat's Last Theorem; elliptic curves; Galois representations
UR - http://eudml.org/doc/10133
ER -
References
top- Modular forms and Fermat’s Last Theorem; ed. G. Cornell, J.H. Silverman, G. Stevens, New York (1997). Zbl0878.11004MR1638473
- Frey (G.).— Some remarks concerning points of finite order on elliptic curves over global fields; Arkiv för Mat. 15, p. 1-19 (1977). Zbl0348.14018MR457444
- Frey (G.).— Links between stable elliptic curves and certain Diophantine equations; Ann. Univ. Saraviensis, 1, p. 1-40 (1986). Zbl0586.10010MR853387
- Frey (G.).— On ternary equations of Fermat type and relations with elliptic curves; in [MF], 527-548. Zbl0976.11027MR1638494
- Hellegouarch (Y.).— Points d’ordre sur les courbes elliptiques; Acta Arith. 26, p. 253-263 (1975). Zbl0264.14007MR379507
- Mazur (B.).— Modular curves and the Eisenstein ideal; Publ. math. IHES 47, p. 33-186 (1977). Zbl0394.14008MR488287
- Ribenboim (P.).— 13 Lectures on Fermat’s Last Theorem; New York (1982). Zbl0456.10006
- Ribet (K.).— On modular representations of arising from modular forms; Inv. Math. 100, p. 431-476 (1990). Zbl0773.11039MR1047143
- Roquette (P.).— Analytic theory of elliptic functions over local fields; Hamb. Math. Einzelschriften, Neue Folge-Heft 1, Vandenhoeck und Ruprecht, Göttingen (1969). Zbl0194.52002MR260753
- Serre (J.-P.).— Propriétés galoisiennes des points d’ordre finis des courbes elliptiques; Inv. Math. 15, p. 259-331 (1972). Zbl0235.14012MR387283
- Serre (J.-P.).— Sur les représentations modulaires de degré 2 de ; Duke Math. J. 54, p. 179-230 (1987). Zbl0641.10026MR885783
- Silverman (J.H.).— The Arithmetic of Elliptic Curves; GTM 106, Berlin and New York (1986). Zbl0585.14026MR817210
- Tate (J.).— The arithmetic of elliptic curves; Inv. Math. 23, p. 179-206 (1974). Zbl0296.14018MR419359
- Taylor (R.), Wiles (A.).— Ring theoretic properties of certain Hecke algebras; Annals of Math. 141, p. 553-572 (1995). Zbl0823.11030MR1333036
- Wiles (A.).— Modular elliptic curves and Fermat’s Last Theorem; Annals of Math. 142, p. 443-551 (1995). Zbl0823.11029MR1333035
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.