The Way to the Proof of Fermat’s Last Theorem

Gerhard Frey[1]

  • [1] Institute for Experimental Mathematics, University of Duisburg-Essen, Ellernstrasse 29, D-45326 Essen, Germany

Annales de la faculté des sciences de Toulouse Mathématiques (2009)

  • Volume: 18, Issue: S2, page 5-23
  • ISSN: 0240-2963

How to cite

top

Frey, Gerhard. "The Way to the Proof of Fermat’s Last Theorem." Annales de la faculté des sciences de Toulouse Mathématiques 18.S2 (2009): 5-23. <http://eudml.org/doc/10133>.

@article{Frey2009,
affiliation = {Institute for Experimental Mathematics, University of Duisburg-Essen, Ellernstrasse 29, D-45326 Essen, Germany},
author = {Frey, Gerhard},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Fermat's Last Theorem; elliptic curves; Galois representations},
language = {eng},
month = {4},
number = {S2},
pages = {5-23},
publisher = {Université Paul Sabatier, Toulouse},
title = {The Way to the Proof of Fermat’s Last Theorem},
url = {http://eudml.org/doc/10133},
volume = {18},
year = {2009},
}

TY - JOUR
AU - Frey, Gerhard
TI - The Way to the Proof of Fermat’s Last Theorem
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2009/4//
PB - Université Paul Sabatier, Toulouse
VL - 18
IS - S2
SP - 5
EP - 23
LA - eng
KW - Fermat's Last Theorem; elliptic curves; Galois representations
UR - http://eudml.org/doc/10133
ER -

References

top
  1. Modular forms and Fermat’s Last Theorem; ed. G. Cornell, J.H. Silverman, G. Stevens, New York (1997). Zbl0878.11004MR1638473
  2. Frey (G.).— Some remarks concerning points of finite order on elliptic curves over global fields; Arkiv för Mat. 15, p. 1-19 (1977). Zbl0348.14018MR457444
  3. Frey (G.).— Links between stable elliptic curves and certain Diophantine equations; Ann. Univ. Saraviensis, 1, p. 1-40 (1986). Zbl0586.10010MR853387
  4. Frey (G.).— On ternary equations of Fermat type and relations with elliptic curves; in [MF], 527-548. Zbl0976.11027MR1638494
  5. Hellegouarch (Y.).— Points d’ordre 2 p h sur les courbes elliptiques; Acta Arith. 26, p. 253-263 (1975). Zbl0264.14007MR379507
  6. Mazur (B.).— Modular curves and the Eisenstein ideal; Publ. math. IHES 47, p. 33-186 (1977). Zbl0394.14008MR488287
  7. Ribenboim (P.).— 13 Lectures on Fermat’s Last Theorem; New York (1982). Zbl0456.10006
  8. Ribet (K.).— On modular representations of G a l ( ¯ / ) arising from modular forms; Inv. Math. 100, p. 431-476 (1990). Zbl0773.11039MR1047143
  9. Roquette (P.).— Analytic theory of elliptic functions over local fields; Hamb. Math. Einzelschriften, Neue Folge-Heft 1, Vandenhoeck und Ruprecht, Göttingen (1969). Zbl0194.52002MR260753
  10. Serre (J.-P.).— Propriétés galoisiennes des points d’ordre finis des courbes elliptiques; Inv. Math. 15, p. 259-331 (1972). Zbl0235.14012MR387283
  11. Serre (J.-P.).— Sur les représentations modulaires de degré 2 de G ( ¯ / ) ; Duke Math. J. 54, p. 179-230 (1987). Zbl0641.10026MR885783
  12. Silverman (J.H.).— The Arithmetic of Elliptic Curves; GTM 106, Berlin and New York (1986). Zbl0585.14026MR817210
  13. Tate (J.).— The arithmetic of elliptic curves; Inv. Math. 23, p. 179-206 (1974). Zbl0296.14018MR419359
  14. Taylor (R.), Wiles (A.).— Ring theoretic properties of certain Hecke algebras; Annals of Math. 141, p. 553-572 (1995). Zbl0823.11030MR1333036
  15. Wiles (A.).— Modular elliptic curves and Fermat’s Last Theorem; Annals of Math. 142, p. 443-551 (1995). Zbl0823.11029MR1333035

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.